a
    yf	                     @   s*   d dl mZ d dlmZmZ d	ddZdS )
    )Path)SAMYOLO
yolov8x.ptsam_b.pt Nc              	   C   s@  t |}t|}t| } |s.| j| j d }t|jddd || d|d}|D ]}|jj 	 }t
|rR|jj}||j|dd|d}	|	d jj}
tt|t|jj  dd	r}tt
|
D ]T}|
| }t
|dkrqtt|
| d
	 }|||  dd| d  qW d   qR1 s00    Y  qRdS )a  
    Automatically annotates images using a YOLO object detection model and a SAM segmentation model.

    This function processes images in a specified directory, detects objects using a YOLO model, and then generates
    segmentation masks using a SAM model. The resulting annotations are saved as text files.

    Args:
        data (str): Path to a folder containing images to be annotated.
        det_model (str): Path or name of the pre-trained YOLO detection model.
        sam_model (str): Path or name of the pre-trained SAM segmentation model.
        device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0').
        output_dir (str | None): Directory to save the annotated results. If None, a default directory is created.

    Examples:
        >>> from ultralytics.data.annotator import auto_annotate
        >>> auto_annotate(data="ultralytics/assets", det_model="yolov8n.pt", sam_model="mobile_sam.pt")

    Notes:
        - The function creates a new directory for output if not specified.
        - Annotation results are saved as text files with the same names as the input images.
        - Each line in the output text file represents a detected object with its class ID and segmentation points.
    Z_auto_annotate_labelsT)exist_okparents)streamdeviceF)Zbboxesverbosesaver   r   z.txtw 
N)r   r   r   parentstemmkdirboxesclsinttolistlenZxyxyZorig_imgmasksZxynopenpathrangemapstrZreshapewritejoin)dataZ	det_modelZ	sam_modelr   
output_dirZdet_resultsresultZ	class_idsr   Zsam_resultssegmentsfissegment r*   V/var/www/html/django/DPS/env/lib/python3.9/site-packages/ultralytics/data/annotator.pyauto_annotate   s(    "r,   )r   r   r   N)pathlibr   Zultralyticsr   r   r,   r*   r*   r*   r+   <module>   s   