a
    PSicK                     @   s   d dl mZmZ d dlZd dlmZmZ d dlmZ d dlm	Z	 d dl
mZ ddlmZ d	d
lmZmZ deeeee f ee eedddZG dd dejZdS )    )ListUnionN)nnTensor)BroadcastingList2)_pair)_assert_has_ops   )_log_api_usage_once   )convert_boxes_to_roi_formatcheck_roi_boxes_shape      ?)inputboxesoutput_sizespatial_scalereturnc                 C   sp   t j st j stt t  t| |}t|}t	|t j
sJt|}t jj| |||d |d \}}|S )aU  
    Performs Region of Interest (RoI) Pool operator described in Fast R-CNN

    Args:
        input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
            contains ``C`` feature maps of dimensions ``H x W``.
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
            format where the regions will be taken from.
            The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
            If a single Tensor is passed, then the first column should
            contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
            If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
            in the batch.
        output_size (int or Tuple[int, int]): the size of the output after the cropping
            is performed, as (height, width)
        spatial_scale (float): a scaling factor that maps the box coordinates to
            the input coordinates. For example, if your boxes are defined on the scale
            of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of
            the original image), you'll want to set this to 0.5. Default: 1.0

    Returns:
        Tensor[K, C, output_size[0], output_size[1]]: The pooled RoIs.
    r   r   )torchjitis_scripting
is_tracingr
   roi_poolr   r   r   
isinstancer   r   opstorchvision)r   r   r   r   roisoutput_ r   T/var/www/html/django/DPS/env/lib/python3.9/site-packages/torchvision/ops/roi_pool.pyr      s    "r   c                       sL   e Zd ZdZee ed fddZeeedddZ	e
dd	d
Z  ZS )RoIPoolz
    See :func:`roi_pool`.
    )r   r   c                    s"   t    t|  || _|| _d S N)super__init__r
   r   r   )selfr   r   	__class__r   r    r$   ;   s    
zRoIPool.__init__)r   r   r   c                 C   s   t ||| j| jS r"   )r   r   r   )r%   r   r   r   r   r    forwardA   s    zRoIPool.forward)r   c                 C   s"   | j j d| j d| j d}|S )Nz(output_size=z, spatial_scale=))r'   __name__r   r   )r%   sr   r   r    __repr__D   s    zRoIPool.__repr__)r*   
__module____qualname____doc__r   intfloatr$   r   r(   strr,   __classcell__r   r   r&   r    r!   6   s   r!   )r   )typingr   r   r   r   r   torch.jit.annotationsr   Ztorch.nn.modules.utilsr   Ztorchvision.extensionr   utilsr
   _utilsr   r   r0   r1   r   Moduler!   r   r   r   r    <module>   s     )