a
    PSicw1                     @   s   d dl Z d dlmZmZmZ d dlZd dlmZ ddlmZ ej	j
jZG dd dej	jZG dd	 d	ej	jZG d
d deZG dd deZG dd dej	jZG dd dej	jZG dd dej	jZdS )    N)CallableListOptional)Tensor   )_log_api_usage_oncec                       sr   e Zd ZdZdeed fddZeeee	e
e e
e e
e d fddZeed	d
dZedddZ  ZS )FrozenBatchNorm2da!  
    BatchNorm2d where the batch statistics and the affine parameters are fixed

    Args:
        num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
        eps (float): a value added to the denominator for numerical stability. Default: 1e-5
    h㈵>)num_featuresepsc                    sd   t    t|  || _| dt| | dt| | dt| | dt| d S )Nweightbiasrunning_meanrunning_var)super__init__r   r   register_buffertorchoneszeros)selfr
   r   	__class__ P/var/www/html/django/DPS/env/lib/python3.9/site-packages/torchvision/ops/misc.pyr      s    
zFrozenBatchNorm2d.__init__)
state_dictprefixlocal_metadatastrictmissing_keysunexpected_keys
error_msgsc           	   	      s2   |d }||v r||= t  ||||||| d S )Nnum_batches_tracked)r   _load_from_state_dict)	r   r   r   r   r   r   r    r!   num_batches_tracked_keyr   r   r   r#   #   s    
z'FrozenBatchNorm2d._load_from_state_dictxreturnc                 C   sr   | j dddd}| jdddd}| jdddd}| jdddd}||| j   }|||  }|| | S )N   )r   reshaper   r   r   r   rsqrt)r   r&   wbrvrmscaler   r   r   r   forward5   s    zFrozenBatchNorm2d.forward)r'   c                 C   s$   | j j d| jjd  d| j dS )N(r   z, eps=))r   __name__r   shaper   )r   r   r   r   __repr__@   s    zFrozenBatchNorm2d.__repr__)r	   )r4   
__module____qualname____doc__intfloatr   dictstrboolr   r#   r   r1   r6   __classcell__r   r   r   r   r      s     r   c                       s   e Zd Zddddejjejjdddejjf
eeeee	e ee	e
dejjf  e	e
dejjf  ee	e e	e e
dejjf dd fddZ  ZS )	ConvNormActivation   r(   NT.)in_channelsout_channelskernel_sizestridepaddinggroups
norm_layeractivation_layerdilationinplacer   
conv_layerr'   c              
      s   |d u r|d d |	 }|d u r(|d u }|||||||	||dg}|d urX| || |d ur|
d u rli nd|
i}| |f i | t j|  t|  || _| jtkrtd d S )Nr(   r   )rJ   rG   r   rK   zhDon't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead.)	appendr   r   r   rC   r   r@   warningswarn)r   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   r   rL   layersparamsr   r   r   r   E   s6    
zConvNormActivation.__init__)r4   r7   r8   r   nnBatchNorm2dReLUConv2dr:   r   r   Moduler>   r   r?   r   r   r   r   r@   D   s2   r@   c                       s   e Zd ZdZddddejjejjdddf	eeeee	e ee	e
dejjf  e	e
dejjf  ee	e e	e dd fdd	Z  ZS )
Conv2dNormActivationa  
    Configurable block used for Convolution2d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.

    rA   r(   NT.rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   r   r'   c                    s*   t  |||||||||	|
|tjj d S N)r   r   r   rR   rU   r   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   r   r   r   r   r      s    zConv2dNormActivation.__init__)r4   r7   r8   r9   r   rR   rS   rT   r:   r   r   rV   r>   r   r?   r   r   r   r   rW   w   s0   rW   c                       s   e Zd ZdZddddejjejjdddf	eeeee	e ee	e
dejjf  e	e
dejjf  ee	e e	e dd fdd	Z  ZS )
Conv3dNormActivationa  
    Configurable block used for Convolution3d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input video.
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm3d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    rA   r(   NT.rX   c                    s*   t  |||||||||	|
|tjj d S rY   )r   r   r   rR   Conv3drZ   r   r   r   r      s    zConv3dNormActivation.__init__)r4   r7   r8   r9   r   rR   BatchNorm3drT   r:   r   r   rV   r>   r   r?   r   r   r   r   r[      s0   r[   c                       st   e Zd ZdZejjejjfeee	dejj
f e	dejj
f dd fddZeeddd	Zeedd
dZ  ZS )SqueezeExcitationaE  
    This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
    Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.

    Args:
        input_channels (int): Number of channels in the input image
        squeeze_channels (int): Number of squeeze channels
        activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
        scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
    .N)input_channelssqueeze_channels
activationscale_activationr'   c                    sX   t    t|  tjd| _tj||d| _tj||d| _	| | _
| | _d S )Nr(   )r   r   r   r   rR   AdaptiveAvgPool2davgpoolrU   fc1fc2ra   rb   )r   r_   r`   ra   rb   r   r   r   r      s    
zSqueezeExcitation.__init__)inputr'   c                 C   s2   |  |}| |}| |}| |}| |S rY   )rd   re   ra   rf   rb   r   rg   r0   r   r   r   _scale   s
    



zSqueezeExcitation._scalec                 C   s   |  |}|| S rY   )ri   rh   r   r   r   r1      s    
zSqueezeExcitation.forward)r4   r7   r8   r9   r   rR   rT   Sigmoidr:   r   rV   r   r   ri   r1   r?   r   r   r   r   r^      s   r^   c                	       sj   e Zd ZdZdejjdddfeee e	e
dejjf  e	e
dejjf  e	e eed fddZ  ZS )	MLPa  This block implements the multi-layer perceptron (MLP) module.

    Args:
        in_channels (int): Number of channels of the input
        hidden_channels (List[int]): List of the hidden channel dimensions
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``None``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool): Whether to use bias in the linear layer. Default ``True``
        dropout (float): The probability for the dropout layer. Default: 0.0
    NTg        .)rB   hidden_channelsrH   rI   rK   r   dropoutc                    s   |d u ri nd|i}g }	|}
|d d D ]d}|	 tjj|
||d |d urZ|	 || |	 |f i | |	 tjj|fi | |}
q(|	 tjj|
|d |d |	 tjj|fi | t j|	  t|  d S )NrK   r)   )r   )rM   r   rR   LinearDropoutr   r   r   )r   rB   rl   rH   rI   rK   r   rm   rQ   rP   in_dim
hidden_dimr   r   r   r     s    zMLP.__init__)r4   r7   r8   r9   r   rR   rT   r:   r   r   r   rV   r>   r;   r   r?   r   r   r   r   rk     s   rk   c                       s:   e Zd ZdZee d fddZeedddZ  Z	S )PermutezThis module returns a view of the tensor input with its dimensions permuted.

    Args:
        dims (List[int]): The desired ordering of dimensions
    )dimsc                    s   t    || _d S rY   )r   r   rs   )r   rs   r   r   r   r   4  s    
zPermute.__init__r%   c                 C   s   t || jS rY   )r   permuters   )r   r&   r   r   r   r1   8  s    zPermute.forward)
r4   r7   r8   r9   r   r:   r   r   r1   r?   r   r   r   r   rr   -  s   rr   )rN   typingr   r   r   r   r   utilsr   rR   
functionalinterpolaterV   r   
Sequentialr@   rW   r[   r^   rk   rr   r   r   r   r   <module>   s   
7321',