a
    PSicA                     @   s  d dl Z d dlmZ d dlmZ d dlmZmZmZm	Z	 d dl
Z
d dlmZ d dlm  mZ d dlm  mZ d dl
mZ ddlmZ ddlmZ d	d
lmZmZ d	dlmZ d	dlmZmZ g dZ G dd dej!Z"G dd dej#Z$G dd dej%Z&G dd dej!Z'ej!ee(ddddZ)e*e	e*e*e*e*f e*ee e(ee'dddZ+dedddZ,G d d! d!eZ-G d"d# d#eZ.G d$d% d%eZ/G d&d' d'eZ0ed(e-j1fd)dd*d+ee- e(ee'd,d-d.Z2ed(e.j1fd)dd*d+ee. e(ee'd,d/d0Z3ed(e/j1fd)dd*d+ee/ e(ee'd,d1d2Z4ed(e0j1fd)dd*d+ee0 e(ee'd,d3d4Z5d	d5lm6Z6 e6e-j1j7e/j1j7e0j1j7e.j1j7d6Z8dS )7    N)OrderedDict)partial)AnyListOptionalTuple)Tensor   )ImageClassification)_log_api_usage_once   )WeightsEnumWeights)_IMAGENET_CATEGORIES)handle_legacy_interface_ovewrite_named_param)	DenseNetDenseNet121_WeightsDenseNet161_WeightsDenseNet169_WeightsDenseNet201_Weightsdensenet121densenet161densenet169densenet201c                       s   e Zd Zdeeeeedd fddZee edddZ	ee ed	d
dZ
ejjee ed	ddZejjee ed	ddZejjeed	ddZeed	ddZ  ZS )_DenseLayerFN)num_input_featuresgrowth_ratebn_size	drop_ratememory_efficientreturnc                    s   t    t|| _tjdd| _tj||| dddd| _t|| | _	tjdd| _
tj|| |ddddd| _t|| _|| _d S )NTinplacer   Fkernel_sizestridebias   r%   r&   paddingr'   )super__init__nnBatchNorm2dnorm1ReLUrelu1Conv2dconv1norm2relu2conv2floatr   r    )selfr   r   r   r   r    	__class__ W/var/www/html/django/DPS/env/lib/python3.9/site-packages/torchvision/models/densenet.pyr,   !   s    

z_DenseLayer.__init__)inputsr!   c                 C   s&   t |d}| | | |}|S Nr   )torchcatr3   r1   r/   )r8   r=   Zconcated_featuresbottleneck_outputr;   r;   r<   bn_function0   s    z_DenseLayer.bn_function)inputr!   c                 C   s   |D ]}|j r dS qdS )NTF)requires_grad)r8   rC   tensorr;   r;   r<   any_requires_grad6   s    z_DenseLayer.any_requires_gradc                    s    fdd}t j|g|R  S )Nc                     s
     | S N)rB   )r=   r8   r;   r<   closure>   s    z7_DenseLayer.call_checkpoint_bottleneck.<locals>.closure)cp
checkpoint)r8   rC   rI   r;   rH   r<   call_checkpoint_bottleneck<   s    z&_DenseLayer.call_checkpoint_bottleneckc                 C   s   d S rG   r;   r8   rC   r;   r;   r<   forwardC   s    z_DenseLayer.forwardc                 C   s   d S rG   r;   rM   r;   r;   r<   rN   G   s    c                 C   s   t |tr|g}n|}| jrD| |rDtj r8td| |}n
| 	|}| 
| | |}| jdkrtj|| j| jd}|S )Nz%Memory Efficient not supported in JITr   )ptraining)
isinstancer   r    rF   r?   jitis_scripting	ExceptionrL   rB   r6   r5   r4   r   FdropoutrP   )r8   rC   Zprev_featuresrA   new_featuresr;   r;   r<   rN   M   s    



)F)__name__
__module____qualname__intr7   boolr,   r   r   rB   rF   r?   rR   unusedrL   _overload_methodrN   __classcell__r;   r;   r9   r<   r       s    
r   c                	       sD   e Zd ZdZd
eeeeeedd fddZeeddd	Z	  Z
S )_DenseBlockr	   FN)
num_layersr   r   r   r   r    r!   c           	         sJ   t    t|D ]2}t|||  ||||d}| d|d  | qd S )N)r   r   r   r    zdenselayer%dr   )r+   r,   ranger   
add_module)	r8   ra   r   r   r   r   r    ilayerr9   r;   r<   r,   d   s    	

z_DenseBlock.__init__)init_featuresr!   c                 C   s6   |g}|   D ]\}}||}|| qt|dS r>   )itemsappendr?   r@   )r8   rf   featuresnamere   rW   r;   r;   r<   rN   x   s
    z_DenseBlock.forward)F)rX   rY   rZ   _versionr[   r7   r\   r,   r   rN   r_   r;   r;   r9   r<   r`   a   s   	 r`   c                       s&   e Zd Zeedd fddZ  ZS )_TransitionN)r   num_output_featuresr!   c                    sN   t    t|| _tjdd| _tj||dddd| _tj	ddd| _
d S )NTr"   r   Fr$   r	   )r%   r&   )r+   r,   r-   r.   normr0   relur2   conv	AvgPool2dpool)r8   r   rm   r9   r;   r<   r,      s
    
z_Transition.__init__)rX   rY   rZ   r[   r,   r_   r;   r;   r9   r<   rl      s   rl   c                
       sR   e Zd ZdZdeeeeeef eeeeed	d
 fddZe	e	dddZ
  ZS )r   aK  Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
                    @      r     FN)r   block_confignum_init_featuresr   r   num_classesr    r!   c                    s  t    t|  ttdtjd|dddddfdt|fdtjd	d
fdtj	ddddfg| _
|}t|D ]|\}	}
t|
|||||d}| j
d|	d  | ||
|  }|	t|d krrt||d d}| j
d|	d  | |d }qr| j
dt| t||| _|  D ]r}t|tjr<tj|j nNt|tjrltj|jd tj|jd nt|tjrtj|jd qd S )NZconv0r(      r	   Fr)   Znorm0Zrelu0Tr"   Zpool0r   )r%   r&   r*   )ra   r   r   r   r   r    zdenseblock%d)r   rm   ztransition%dZnorm5r   )r+   r,   r   r-   
Sequentialr   r2   r.   r0   	MaxPool2dri   	enumerater`   rc   lenrl   Linear
classifiermodulesrQ   initkaiming_normal_weight	constant_r'   )r8   r   r|   r}   r   r   r~   r    num_featuresrd   ra   blocktransmr9   r;   r<   r,      sJ    

zDenseNet.__init__)xr!   c                 C   s>   |  |}tj|dd}t|d}t|d}| |}|S )NTr"   )r   r   r   )ri   rU   ro   adaptive_avg_pool2dr?   flattenr   )r8   r   ri   outr;   r;   r<   rN      s    

zDenseNet.forward)rs   rt   ry   rz   r   r{   F)rX   rY   rZ   __doc__r[   r   r7   r\   r,   r   rN   r_   r;   r;   r9   r<   r      s&          <r   )modelweightsprogressr!   c                 C   sj   t d}|j|d}t| D ]8}||}|r"|d|d }|| ||< ||= q"| | d S )Nz]^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$)r   r   r	   )recompileget_state_dictlistkeysmatchgroupload_state_dict)r   r   r   pattern
state_dictkeyresnew_keyr;   r;   r<   _load_state_dict   s    
r   )r   r|   r}   r   r   kwargsr!   c                 K   sL   |d urt |dt|jd  t| ||fi |}|d urHt|||d |S )Nr~   
categories)r   r   r   )r   r   metar   r   )r   r|   r}   r   r   r   r   r;   r;   r<   	_densenet   s    r   )   r   z*https://github.com/pytorch/vision/pull/116z'These weights are ported from LuaTorch.)min_sizer   recipe_docsc                	   @   s>   e Zd Zedeeddi edddddid	d
ZeZdS )r   z<https://download.pytorch.org/models/densenet121-a639ec97.pth   	crop_sizeihy ImageNet-1KgƛR@g|?5V@zacc@1zacc@5
num_params_metricsurl
transformsr   N	rX   rY   rZ   r   r   r
   _COMMON_METAIMAGENET1K_V1DEFAULTr;   r;   r;   r<   r     s   
r   c                	   @   s>   e Zd Zedeeddi edddddid	d
ZeZdS )r   z<https://download.pytorch.org/models/densenet161-8d451a50.pthr   r   i(r   gFHS@gp=
cW@r   r   r   Nr   r;   r;   r;   r<   r     s   
r   c                	   @   s>   e Zd Zedeeddi edddddid	d
ZeZdS )r   z<https://download.pytorch.org/models/densenet169-b2777c0a.pthr   r   ih r   gfffffR@g$3W@r   r   r   Nr   r;   r;   r;   r<   r   0  s   
r   c                	   @   s>   e Zd Zedeeddi edddddid	d
ZeZdS )r   z<https://download.pytorch.org/models/densenet201-c1103571.pthr   r   ihc1r   gMbX9S@gHzWW@r   r   r   Nr   r;   r;   r;   r<   r   B  s   
r   
pretrained)r   T)r   r   )r   r   r   r!   c                 K   s"   t | } tddd| |fi |S )a{  Densenet-121 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet121_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet121_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet121_Weights
        :members:
    rs   rt   ry   )r   verifyr   r   r   r   r;   r;   r<   r   T  s    
r   c                 K   s"   t | } tddd| |fi |S )a{  Densenet-161 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet161_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet161_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet161_Weights
        :members:
    0   )ru   rv   $   rw   `   )r   r   r   r   r;   r;   r<   r   m  s    
r   c                 K   s"   t | } tddd| |fi |S )a{  Densenet-169 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet169_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet169_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet169_Weights
        :members:
    rs   )ru   rv   rs   rs   ry   )r   r   r   r   r;   r;   r<   r     s    
r   c                 K   s"   t | } tddd| |fi |S )a{  Densenet-201 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet201_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet201_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet201_Weights
        :members:
    rs   )ru   rv   r   rs   ry   )r   r   r   r   r;   r;   r<   r     s    
r   )
_ModelURLs)r   r   r   r   )9r   collectionsr   	functoolsr   typingr   r   r   r   r?   torch.nnr-   torch.nn.functional
functionalrU   Ztorch.utils.checkpointutilsrK   rJ   r   Ztransforms._presetsr
   r   _apir   r   _metar   _utilsr   r   __all__Moduler   
ModuleDictr`   r   rl   r   r\   r   r[   r   r   r   r   r   r   r   r   r   r   r   r   r   
model_urlsr;   r;   r;   r<   <module>   sh   A	U""""