a
    MSic                     @   s   d dl Z d dlZd dlZd dlmZ d dlmZ d dlmZm	Z	 dd Z
g dZg dZg d	Zg d
ZeegZeegZdddZejjdd ZG dd deZdS )    N)constraints)Distribution)broadcast_alllazy_propertyc                 C   s*   t |}| }|r&| | |  }q|S N)listpop)ycoefresult r   Y/var/www/html/django/DPS/env/lib/python3.9/site-packages/torch/distributions/von_mises.py
_eval_poly
   s
    r   )g      ?g$@g03@g,?N?g2t?gIx?gtHZr?)	 e3E?g-5?gՒ+Hub?gJNYgTPÂ?g'gZ?gUL+ߐg;^p?)      ?gY?g(z?g*O?gZ9?g.h?gӰ٩=5?)	r   g.kg?VmgtZOZ?g<Q g'8`?gP⥝gqJ:N?g;PJ4qc                 C   s   |dks|dksJ | d }|| }t |t| }|dkrF|  | }| }d|  }| d|    t |t|   }t| dk ||}|S )zX
    Returns ``log(I_order(x))`` for ``x > 0``,
    where `order` is either 0 or 1.
    r      g      @r   )r   _COEF_SMALLabslog_COEF_LARGEtorchwhere)xorderr	   Zsmalllarger   r   r   r   _log_modified_bessel_fn   s    "r   c                 C   s   t j|jt j| jd}| st jd|j | j| jd}| \}}}t 	t
j| }	d||	  ||	  }
|||
  }|d|  | dk||  d | dkB }| rt ||d  |
  |}||B }q|t
j |  dt
j  t
j S )Ndtypedevice)   r      r   r   )r   zerosshapeboolr   allrandr   unbindcosmathpir   anyr   signacos)locconcentrationZ
proposal_rr   doneuu1u2u3zfcacceptr   r   r   _rejection_sample4   s    ,
r8   c                       s   e Zd ZdZejejdZejZdZ	d fdd	Z
dd Ze e fd	d
Z fddZedd Zedd Zedd Z  ZS )VonMisesa"  
    A circular von Mises distribution.

    This implementation uses polar coordinates. The ``loc`` and ``value`` args
    can be any real number (to facilitate unconstrained optimization), but are
    interpreted as angles modulo 2 pi.

    Example::
        >>> m = dist.VonMises(torch.tensor([1.0]), torch.tensor([1.0]))
        >>> m.sample() # von Mises distributed with loc=1 and concentration=1
        tensor([1.9777])

    :param torch.Tensor loc: an angle in radians.
    :param torch.Tensor concentration: concentration parameter
    )r-   r.   FNc                    s   t ||\| _| _| jj}t }ddd| jd     }|d|   d| j  }d|d  d|  | _tt	| 
||| d S )Nr      r    )r   r-   r.   r"   r   Sizesqrt_proposal_rsuperr9   __init__)selfr-   r.   validate_argsbatch_shapeevent_shapetaurho	__class__r   r   r?   X   s    zVonMises.__init__c                 C   sL   | j r| | | jt|| j  }|tdtj  t	| jdd }|S )Nr    r   r   )
_validate_args_validate_sampler.   r   r'   r-   r(   r   r)   r   )r@   valuelog_probr   r   r   rL   d   s
    
"zVonMises.log_probc                 C   s6   |  |}tj|| jj| jjd}t| j| j| j|S )z
        The sampling algorithm for the von Mises distribution is based on the following paper:
        Best, D. J., and Nicholas I. Fisher.
        "Efficient simulation of the von Mises distribution." Applied Statistics (1979): 152-157.
        r   )	_extended_shaper   emptyr-   r   r   r8   r.   r=   )r@   sample_shaper"   r   r   r   r   samplek   s    
zVonMises.samplec                    s`   zt t| |W S  tyZ   | jd}| j|}| j|}t| |||d Y S 0 d S )NrI   )rA   )	r>   r9   expandNotImplementedError__dict__getr-   r.   type)r@   rB   rA   r-   r.   rF   r   r   rQ   v   s    zVonMises.expandc                 C   s   | j S )z8
        The provided mean is the circular one.
        r-   r@   r   r   r   mean   s    zVonMises.meanc                 C   s   | j S r   rV   rW   r   r   r   mode   s    zVonMises.modec                 C   s$   dt | jddt | jdd   S )z<
        The provided variance is the circular one.
        r   rH   r   )r   r.   exprW   r   r   r   variance   s    zVonMises.variance)N)__name__
__module____qualname____doc__r   realpositivearg_constraintssupporthas_rsampler?   rL   r   no_gradr;   rP   rQ   propertyrX   rY   r   r[   __classcell__r   r   rF   r   r9   D   s   
	

r9   )r   )r(   r   	torch.jitZtorch.distributionsr    torch.distributions.distributionr   torch.distributions.utilsr   r   r   Z_I0_COEF_SMALLZ_I0_COEF_LARGEZ_I1_COEF_SMALLZ_I1_COEF_LARGEr   r   r   jitscript_if_tracingr8   r9   r   r   r   r   <module>   s    

