a
    MSic	                     @   s(   d dl Z d dlmZ G dd deZdS )    N)Distributionc                   @   s8   e Zd ZdZedd Zdd Zedd Zdd	 Zd
S )ExponentialFamilya  
    ExponentialFamily is the abstract base class for probability distributions belonging to an
    exponential family, whose probability mass/density function has the form is defined below

    .. math::

        p_{F}(x; \theta) = \exp(\langle t(x), \theta\rangle - F(\theta) + k(x))

    where :math:`\theta` denotes the natural parameters, :math:`t(x)` denotes the sufficient statistic,
    :math:`F(\theta)` is the log normalizer function for a given family and :math:`k(x)` is the carrier
    measure.

    Note:
        This class is an intermediary between the `Distribution` class and distributions which belong
        to an exponential family mainly to check the correctness of the `.entropy()` and analytic KL
        divergence methods. We use this class to compute the entropy and KL divergence using the AD
        framework and Bregman divergences (courtesy of: Frank Nielsen and Richard Nock, Entropies and
        Cross-entropies of Exponential Families).
    c                 C   s   t dS )zv
        Abstract method for natural parameters. Returns a tuple of Tensors based
        on the distribution
        NNotImplementedErrorself r   Z/var/www/html/django/DPS/env/lib/python3.9/site-packages/torch/distributions/exp_family.py_natural_params   s    z!ExponentialFamily._natural_paramsc                 G   s   t dS )z
        Abstract method for log normalizer function. Returns a log normalizer based on
        the distribution and input
        Nr   )r   Znatural_paramsr   r   r	   _log_normalizer"   s    z!ExponentialFamily._log_normalizerc                 C   s   t dS )zp
        Abstract method for expected carrier measure, which is required for computing
        entropy.
        Nr   r   r   r   r	   _mean_carrier_measure)   s    z'ExponentialFamily._mean_carrier_measurec                 C   sv   | j  }dd | jD }| j| }tjj| |dd}||7 }t||D ]&\}}||| | j	d d8 }qJ|S )z_
        Method to compute the entropy using Bregman divergence of the log normalizer.
        c                 S   s   g | ]}|   qS r   )detachrequires_grad_).0pr   r   r	   
<listcomp>6       z-ExponentialFamily.entropy.<locals>.<listcomp>T)create_graph)r   )
r   r
   r   torchautogradgradsumzipreshape_batch_shape)r   resultnparamsZ	lg_normal	gradientsnpgr   r   r	   entropy1   s    
 zExponentialFamily.entropyN)	__name__
__module____qualname____doc__propertyr
   r   r   r!   r   r   r   r	   r      s   

r   )r   Z torch.distributions.distributionr   r   r   r   r   r	   <module>   s   