a
    MSic'                     @   s   d Z ddlZddlmZmZ g dZG dd deZe Ze Z	e
eje	
ejdd Ze
ejd	d
 Ze	
ejdd Ze
eje
eje	
eje	
ejdd Ze
eje
eje	
eje	
ejdd Ze
eje	
ejdd Ze
eje
eje	
eje	
ejdd Ze
ejdd Ze	
ejdd Ze	
ejdd Ze
ej e	
ej dd Z!e
ej"dd Z#e	
ej"dd  Z$e
ej%d!d" Z&e	
ej%d#d$ Z'dS )%aF  
PyTorch provides two global :class:`ConstraintRegistry` objects that link
:class:`~torch.distributions.constraints.Constraint` objects to
:class:`~torch.distributions.transforms.Transform` objects. These objects both
input constraints and return transforms, but they have different guarantees on
bijectivity.

1. ``biject_to(constraint)`` looks up a bijective
   :class:`~torch.distributions.transforms.Transform` from ``constraints.real``
   to the given ``constraint``. The returned transform is guaranteed to have
   ``.bijective = True`` and should implement ``.log_abs_det_jacobian()``.
2. ``transform_to(constraint)`` looks up a not-necessarily bijective
   :class:`~torch.distributions.transforms.Transform` from ``constraints.real``
   to the given ``constraint``. The returned transform is not guaranteed to
   implement ``.log_abs_det_jacobian()``.

The ``transform_to()`` registry is useful for performing unconstrained
optimization on constrained parameters of probability distributions, which are
indicated by each distribution's ``.arg_constraints`` dict. These transforms often
overparameterize a space in order to avoid rotation; they are thus more
suitable for coordinate-wise optimization algorithms like Adam::

    loc = torch.zeros(100, requires_grad=True)
    unconstrained = torch.zeros(100, requires_grad=True)
    scale = transform_to(Normal.arg_constraints['scale'])(unconstrained)
    loss = -Normal(loc, scale).log_prob(data).sum()

The ``biject_to()`` registry is useful for Hamiltonian Monte Carlo, where
samples from a probability distribution with constrained ``.support`` are
propagated in an unconstrained space, and algorithms are typically rotation
invariant.::

    dist = Exponential(rate)
    unconstrained = torch.zeros(100, requires_grad=True)
    sample = biject_to(dist.support)(unconstrained)
    potential_energy = -dist.log_prob(sample).sum()

.. note::

    An example where ``transform_to`` and ``biject_to`` differ is
    ``constraints.simplex``: ``transform_to(constraints.simplex)`` returns a
    :class:`~torch.distributions.transforms.SoftmaxTransform` that simply
    exponentiates and normalizes its inputs; this is a cheap and mostly
    coordinate-wise operation appropriate for algorithms like SVI. In
    contrast, ``biject_to(constraints.simplex)`` returns a
    :class:`~torch.distributions.transforms.StickBreakingTransform` that
    bijects its input down to a one-fewer-dimensional space; this a more
    expensive less numerically stable transform but is needed for algorithms
    like HMC.

The ``biject_to`` and ``transform_to`` objects can be extended by user-defined
constraints and transforms using their ``.register()`` method either as a
function on singleton constraints::

    transform_to.register(my_constraint, my_transform)

or as a decorator on parameterized constraints::

    @transform_to.register(MyConstraintClass)
    def my_factory(constraint):
        assert isinstance(constraint, MyConstraintClass)
        return MyTransform(constraint.param1, constraint.param2)

You can create your own registry by creating a new :class:`ConstraintRegistry`
object.
    N)constraints
transforms)ConstraintRegistry	biject_totransform_toc                       s2   e Zd ZdZ fddZd	ddZdd Z  ZS )
r   z5
    Registry to link constraints to transforms.
    c                    s   i | _ tt|   d S N)	_registrysuperr   __init__)self	__class__ c/var/www/html/django/DPS/env/lib/python3.9/site-packages/torch/distributions/constraint_registry.pyr
   S   s    zConstraintRegistry.__init__Nc                    s\   |du r fddS t  tjr*t  t  tr@t tjsNtd |j < |S )a  
        Registers a :class:`~torch.distributions.constraints.Constraint`
        subclass in this registry. Usage::

            @my_registry.register(MyConstraintClass)
            def construct_transform(constraint):
                assert isinstance(constraint, MyConstraint)
                return MyTransform(constraint.arg_constraints)

        Args:
            constraint (subclass of :class:`~torch.distributions.constraints.Constraint`):
                A subclass of :class:`~torch.distributions.constraints.Constraint`, or
                a singleton object of the desired class.
            factory (callable): A callable that inputs a constraint object and returns
                a  :class:`~torch.distributions.transforms.Transform` object.
        Nc                    s     | S r   )register)factory
constraintr   r   r   <lambda>j       z-ConstraintRegistry.register.<locals>.<lambda>zNExpected constraint to be either a Constraint subclass or instance, but got {})
isinstancer   
Constrainttype
issubclass	TypeErrorformatr   r   r   r   r   r   r   r   W   s    
zConstraintRegistry.registerc                 C   sF   z| j t| }W n* ty<   tdt|j ddY n0 ||S )aq  
        Looks up a transform to constrained space, given a constraint object.
        Usage::

            constraint = Normal.arg_constraints['scale']
            scale = transform_to(constraint)(torch.zeros(1))  # constrained
            u = transform_to(constraint).inv(scale)           # unconstrained

        Args:
            constraint (:class:`~torch.distributions.constraints.Constraint`):
                A constraint object.

        Returns:
            A :class:`~torch.distributions.transforms.Transform` object.

        Raises:
            `NotImplementedError` if no transform has been registered.
        zCannot transform z constraintsN)r   r   KeyErrorNotImplementedError__name__r   r   r   r   __call__w   s    zConstraintRegistry.__call__)N)r   
__module____qualname____doc__r
   r   r    __classcell__r   r   r   r   r   O   s   
 r   c                 C   s   t jS r   )r   Zidentity_transformr   r   r   r   _transform_to_real   s    r&   c                 C   s   t | j}t|| jS r   )r   base_constraintr   IndependentTransformreinterpreted_batch_ndimsr   Zbase_transformr   r   r   _biject_to_independent   s    
r+   c                 C   s   t | j}t|| jS r   )r   r'   r   r(   r)   r*   r   r   r   _transform_to_independent   s    
r,   c                 C   s   t  S r   )r   ExpTransformr%   r   r   r   _transform_to_positive   s    r.   c                 C   s   t t  t | jdgS )N   )r   ComposeTransformr-   AffineTransformlower_boundr%   r   r   r   _transform_to_greater_than   s    
r3   c                 C   s   t t  t | jdgS )N)r   r0   r-   r1   upper_boundr%   r   r   r   _transform_to_less_than   s    
r6   c                 C   sl   t | jtjo| jdk}t | jtjo.| jdk}|r@|r@t S | j}| j| j }tt t||gS )Nr   r/   )	r   r2   numbersNumberr5   r   ZSigmoidTransformr0   r1   )r   Z
lower_is_0Z
upper_is_1locscaler   r   r   _transform_to_interval   s    

r;   c                 C   s   t  S r   )r   ZStickBreakingTransformr%   r   r   r   _biject_to_simplex   s    r<   c                 C   s   t  S r   )r   ZSoftmaxTransformr%   r   r   r   _transform_to_simplex   s    r=   c                 C   s   t  S r   )r   ZLowerCholeskyTransformr%   r   r   r   _transform_to_lower_cholesky   s    r>   c                 C   s   t  S r   )r   ZCorrCholeskyTransformr%   r   r   r   _transform_to_corr_cholesky   s    r?   c                 C   s   t dd | jD | j| jS )Nc                 S   s   g | ]}t |qS r   r   .0cr   r   r   
<listcomp>   s   z"_biject_to_cat.<locals>.<listcomp>r   ZCatTransformcseqdimlengthsr%   r   r   r   _biject_to_cat   s    
rI   c                 C   s   t dd | jD | j| jS )Nc                 S   s   g | ]}t |qS r   r   rA   r   r   r   rD      s   z%_transform_to_cat.<locals>.<listcomp>rE   r%   r   r   r   _transform_to_cat   s    
rK   c                 C   s   t dd | jD | jS )Nc                 S   s   g | ]}t |qS r   r@   rA   r   r   r   rD     s   z$_biject_to_stack.<locals>.<listcomp>r   ZStackTransformrF   rG   r%   r   r   r   _biject_to_stack   s    rM   c                 C   s   t dd | jD | jS )Nc                 S   s   g | ]}t |qS r   rJ   rA   r   r   r   rD     s   z'_transform_to_stack.<locals>.<listcomp>rL   r%   r   r   r   _transform_to_stack  s    rN   )(r#   r7   Ztorch.distributionsr   r   __all__objectr   r   r   r   realr&   independentr+   r,   positivenonnegativer.   greater_thangreater_than_eqr3   	less_thanr6   intervalhalf_open_intervalr;   simplexr<   r=   lower_choleskyr>   corr_choleskyr?   catrI   rK   stackrM   rN   r   r   r   r   <module>   s`   CD


































