# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Utils related to keras metrics."""

import functools
import weakref

from enum import Enum

import numpy as np

from tensorflow.python.compat import compat
from tensorflow.python.distribute import distribution_strategy_context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.keras import backend
from tensorflow.python.keras.utils import losses_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.keras.utils.generic_utils import to_list
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variables as variables_module
from tensorflow.python.ops import weights_broadcast_ops
from tensorflow.python.ops.parallel_for import control_flow_ops as parallel_control_flow_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.util import tf_decorator

NEG_INF = -1e10


class Reduction(Enum):
  """Types of metrics reduction.

  Contains the following values:

  * `SUM`: Scalar sum of weighted values.
  * `SUM_OVER_BATCH_SIZE`: Scalar sum of weighted values divided by
        number of elements.
  * `WEIGHTED_MEAN`: Scalar sum of weighted values divided by sum of weights.
  """
  SUM = 'sum'
  SUM_OVER_BATCH_SIZE = 'sum_over_batch_size'
  WEIGHTED_MEAN = 'weighted_mean'


def update_state_wrapper(update_state_fn):
  """Decorator to wrap metric `update_state()` with `add_update()`.

  Args:
    update_state_fn: function that accumulates metric statistics.

  Returns:
    Decorated function that wraps `update_state_fn()` with `add_update()`.
  """

  def decorated(metric_obj, *args, **kwargs):
    """Decorated function with `add_update()`."""
    strategy = distribution_strategy_context.get_strategy()

    for weight in metric_obj.weights:
      if (backend.is_tpu_strategy(strategy) and
          not strategy.extended.variable_created_in_scope(weight)
          and not distribution_strategy_context.in_cross_replica_context()):
        raise ValueError(
            'Trying to run metric.update_state in replica context when '
            'the metric was not created in TPUStrategy scope. '
            'Make sure the keras Metric is created in TPUstrategy scope. ')

    with tf_utils.graph_context_for_symbolic_tensors(*args, **kwargs):
      update_op = update_state_fn(*args, **kwargs)
    if update_op is not None:  # update_op will be None in eager execution.
      metric_obj.add_update(update_op)
    return update_op

  return tf_decorator.make_decorator(update_state_fn, decorated)


def result_wrapper(result_fn):
  """Decorator to wrap metric `result()` function in `merge_call()`.

  Result computation is an idempotent operation that simply calculates the
  metric value using the state variables.

  If metric state variables are distributed across replicas/devices and
  `result()` is requested from the context of one device - This function wraps
  `result()` in a distribution strategy `merge_call()`. With this,
  the metric state variables will be aggregated across devices.

  Args:
    result_fn: function that computes the metric result.

  Returns:
    Decorated function that wraps `result_fn()` in distribution strategy
    `merge_call()`.
  """

  def decorated(metric_obj, *args):
    """Decorated function with merge_call."""
    has_strategy = distribution_strategy_context.has_strategy()
    replica_context = distribution_strategy_context.get_replica_context()

    # The purpose of using `merge_call` to call `result()` is to trigger cross
    # replica aggregation of metric state variables (SyncOnReadVariable). After
    # we introduced `variable_sync_on_read_context`, in principle there is no
    # need to use `merge_call` here. However the branch still exists because:
    #
    # 1. Keras V1 training code sometimes assumes `result_t` is the same tensor
    #    across replicas (achieved by `merge_call`). With
    #    `variable_sync_on_read_context` each replica gets their own tensors
    #    residing on replica's device, thus breaking the assumption.
    # 2. Keras c/fit creates a tf.function (a.k.a, train_function) that returns
    #    the metric values of the first replica. With
    #    `variable_sync_on_read_context` since each replica gets their own
    #    tensors, the metric result tensors on the non-first replicas are not in
    #    the return value of train_function, making TF graph optimizer prune the
    #    branch that computes and aggregates those metric results. As a result,
    #    if NCCL is used to do the aggregation, the program will hang because
    #    NCCL ops are only launched on the non-pruned first replica.
    #
    # We condition on strategy.extended._use_merge_call() since we know if it is
    # false, the program uses `jit_compile` to compile replica fn, meaning it is
    # not V1 training (hence #1 is okay), and no pruning will happen as
    # compiled functions are not inlined (hence #2 is okay).

    if (not has_strategy or replica_context is None or
        not distribution_strategy_context.get_strategy(
        ).extended._use_merge_call()):
      with distribution_strategy_context.variable_sync_on_read_context():
        raw_result = result_fn(*args)
        # Results need to be wrapped in a `tf.identity` op to ensure
        # correct execution order.
        if isinstance(raw_result,
                      (ops.Tensor, variables_module.Variable, float, int)):
          result_t = array_ops.identity(raw_result)
        elif isinstance(raw_result, dict):
          result_t = {
              key: array_ops.identity(value)
              for key, value in raw_result.items()
          }
        else:
          try:
            result_t = array_ops.identity(raw_result)
          except (ValueError, TypeError):
            raise RuntimeError(
                'The output of `metric.result()` can only be a single '
                'Tensor/Variable, or a dict of Tensors/Variables. '
                'For metric %s, got result %s.' % (metric_obj.name, raw_result))
    else:
      # TODO(psv): Test distribution of metrics using different distribution
      # strategies.

      # Creating a wrapper for merge_fn. merge_call invokes the given merge_fn
      # with distribution object as the first parameter. We create a wrapper
      # here so that the result function need not have that parameter.
      def merge_fn_wrapper(distribution, merge_fn, *args):
        # We will get `PerReplica` merge function. Taking the first one as all
        # are identical copies of the function that we had passed below.
        result = distribution.experimental_local_results(merge_fn)[0](*args)

        # Wrapping result in identity so that control dependency between
        # update_op from `update_state` and result works in case result returns
        # a tensor.
        return array_ops.identity(result)

      # Wrapping result in merge_call. merge_call is used when we want to leave
      # replica mode and compute a value in cross replica mode.
      result_t = replica_context.merge_call(
          merge_fn_wrapper, args=(result_fn,) + args)

    # We are saving the result op here to be used in train/test execution
    # functions. This basically gives the result op that was generated with a
    # control dep to the updates for these workflows.
    metric_obj._call_result = result_t
    return result_t

  return tf_decorator.make_decorator(result_fn, decorated)


def weakmethod(method):
  """Creates a weak reference to the bound method."""

  cls = method.im_class
  func = method.im_func
  instance_ref = weakref.ref(method.im_self)

  @functools.wraps(method)
  def inner(*args, **kwargs):
    return func.__get__(instance_ref(), cls)(*args, **kwargs)

  del method
  return inner


def assert_thresholds_range(thresholds):
  if thresholds is not None:
    invalid_thresholds = [t for t in thresholds if t is None or t < 0 or t > 1]
    if invalid_thresholds:
      raise ValueError(
          'Threshold values must be in [0, 1]. Invalid values: {}'.format(
              invalid_thresholds))


def parse_init_thresholds(thresholds, default_threshold=0.5):
  if thresholds is not None:
    assert_thresholds_range(to_list(thresholds))
  thresholds = to_list(default_threshold if thresholds is None else thresholds)
  return thresholds


class ConfusionMatrix(Enum):
  TRUE_POSITIVES = 'tp'
  FALSE_POSITIVES = 'fp'
  TRUE_NEGATIVES = 'tn'
  FALSE_NEGATIVES = 'fn'


class AUCCurve(Enum):
  """Type of AUC Curve (ROC or PR)."""
  ROC = 'ROC'
  PR = 'PR'

  @staticmethod
  def from_str(key):
    if key in ('pr', 'PR'):
      return AUCCurve.PR
    elif key in ('roc', 'ROC'):
      return AUCCurve.ROC
    else:
      raise ValueError('Invalid AUC curve value "%s".' % key)


class AUCSummationMethod(Enum):
  """Type of AUC summation method.

  https://en.wikipedia.org/wiki/Riemann_sum)

  Contains the following values:
  * 'interpolation': Applies mid-point summation scheme for `ROC` curve. For
    `PR` curve, interpolates (true/false) positives but not the ratio that is
    precision (see Davis & Goadrich 2006 for details).
  * 'minoring': Applies left summation for increasing intervals and right
    summation for decreasing intervals.
  * 'majoring': Applies right summation for increasing intervals and left
    summation for decreasing intervals.
  """
  INTERPOLATION = 'interpolation'
  MAJORING = 'majoring'
  MINORING = 'minoring'

  @staticmethod
  def from_str(key):
    if key in ('interpolation', 'Interpolation'):
      return AUCSummationMethod.INTERPOLATION
    elif key in ('majoring', 'Majoring'):
      return AUCSummationMethod.MAJORING
    elif key in ('minoring', 'Minoring'):
      return AUCSummationMethod.MINORING
    else:
      raise ValueError('Invalid AUC summation method value "%s".' % key)


def _update_confusion_matrix_variables_optimized(
    variables_to_update,
    y_true,
    y_pred,
    thresholds,
    multi_label=False,
    sample_weights=None,
    label_weights=None,
    thresholds_with_epsilon=False):
  """Update confusion matrix variables with memory efficient alternative.

  Note that the thresholds need to be evenly distributed within the list, eg,
  the diff between consecutive elements are the same.

  To compute TP/FP/TN/FN, we are measuring a binary classifier
    C(t) = (predictions >= t)
  at each threshold 't'. So we have
    TP(t) = sum( C(t) * true_labels )
    FP(t) = sum( C(t) * false_labels )

  But, computing C(t) requires computation for each t. To make it fast,
  observe that C(t) is a cumulative integral, and so if we have
    thresholds = [t_0, ..., t_{n-1}];  t_0 < ... < t_{n-1}
  where n = num_thresholds, and if we can compute the bucket function
    B(i) = Sum( (predictions == t), t_i <= t < t{i+1} )
  then we get
    C(t_i) = sum( B(j), j >= i )
  which is the reversed cumulative sum in tf.cumsum().

  We can compute B(i) efficiently by taking advantage of the fact that
  our thresholds are evenly distributed, in that
    width = 1.0 / (num_thresholds - 1)
    thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0]
  Given a prediction value p, we can map it to its bucket by
    bucket_index(p) = floor( p * (num_thresholds - 1) )
  so we can use tf.math.unsorted_segment_sum() to update the buckets in one
  pass.

  Consider following example:
  y_true = [0, 0, 1, 1]
  y_pred = [0.1, 0.5, 0.3, 0.9]
  thresholds = [0.0, 0.5, 1.0]
  num_buckets = 2   # [0.0, 1.0], (1.0, 2.0]
  bucket_index(y_pred) = tf.math.floor(y_pred * num_buckets)
                       = tf.math.floor([0.2, 1.0, 0.6, 1.8])
                       = [0, 0, 0, 1]
  # The meaning of this bucket is that if any of the label is true,
  # then 1 will be added to the corresponding bucket with the index.
  # Eg, if the label for 0.2 is true, then 1 will be added to bucket 0. If the
  # label for 1.8 is true, then 1 will be added to bucket 1.
  #
  # Note the second item "1.0" is floored to 0, since the value need to be
  # strictly larger than the bucket lower bound.
  # In the implementation, we use tf.math.ceil() - 1 to achieve this.
  tp_bucket_value = tf.math.unsorted_segment_sum(true_labels, bucket_indices,
                                                 num_segments=num_thresholds)
                  = [1, 1, 0]
  # For [1, 1, 0] here, it means there is 1 true value contributed by bucket 0,
  # and 1 value contributed by bucket 1. When we aggregate them to together,
  # the result become [a + b + c, b + c, c], since large thresholds will always
  # contribute to the value for smaller thresholds.
  true_positive = tf.math.cumsum(tp_bucket_value, reverse=True)
                = [2, 1, 0]

  This implementation exhibits a run time and space complexity of O(T + N),
  where T is the number of thresholds and N is the size of predictions.
  Metrics that rely on standard implementation instead exhibit a complexity of
  O(T * N).

  Args:
    variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys
      and corresponding variables to update as values.
    y_true: A floating point `Tensor` whose shape matches `y_pred`. Will be cast
      to `bool`.
    y_pred: A floating point `Tensor` of arbitrary shape and whose values are in
      the range `[0, 1]`.
    thresholds: A sorted floating point `Tensor` with value in `[0, 1]`.
      It need to be evenly distributed (the diff between each element need to be
      the same).
    multi_label: Optional boolean indicating whether multidimensional
      prediction/labels should be treated as multilabel responses, or flattened
      into a single label. When True, the valus of `variables_to_update` must
      have a second dimension equal to the number of labels in y_true and
      y_pred, and those tensors must not be RaggedTensors.
    sample_weights: Optional `Tensor` whose rank is either 0, or the same rank
      as `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions
      must be either `1`, or the same as the corresponding `y_true` dimension).
    label_weights: Optional tensor of non-negative weights for multilabel
      data. The weights are applied when calculating TP, FP, FN, and TN without
      explicit multilabel handling (i.e. when the data is to be flattened).
    thresholds_with_epsilon: Optional boolean indicating whether the leading and
      tailing thresholds has any epsilon added for floating point imprecisions.
      It will change how we handle the leading and tailing bucket.

  Returns:
    Update op.
  """
  num_thresholds = thresholds.shape.as_list()[0]

  if sample_weights is None:
    sample_weights = 1.0
  else:
    sample_weights = weights_broadcast_ops.broadcast_weights(
        math_ops.cast(sample_weights, dtype=y_pred.dtype), y_pred)
    if not multi_label:
      sample_weights = array_ops.reshape(sample_weights, [-1])
  if label_weights is None:
    label_weights = 1.0
  else:
    label_weights = array_ops.expand_dims(label_weights, 0)
    label_weights = weights_broadcast_ops.broadcast_weights(label_weights,
                                                            y_pred)
    if not multi_label:
      label_weights = array_ops.reshape(label_weights, [-1])
  weights = math_ops.multiply(sample_weights, label_weights)

  # We shouldn't need this, but in case there are predict value that is out of
  # the range of [0.0, 1.0]
  y_pred = clip_ops.clip_by_value(y_pred,
                                  clip_value_min=0.0, clip_value_max=1.0)

  y_true = math_ops.cast(math_ops.cast(y_true, dtypes.bool), y_true.dtype)
  if not multi_label:
    y_true = array_ops.reshape(y_true, [-1])
    y_pred = array_ops.reshape(y_pred, [-1])

  true_labels = math_ops.multiply(y_true, weights)
  false_labels = math_ops.multiply((1.0 - y_true), weights)

  # Compute the bucket indices for each prediction value.
  # Since the predict value has to be strictly greater than the thresholds,
  # eg, buckets like [0, 0.5], (0.5, 1], and 0.5 belongs to first bucket.
  # We have to use math.ceil(val) - 1 for the bucket.
  bucket_indices = math_ops.ceil(y_pred * (num_thresholds - 1)) - 1

  if thresholds_with_epsilon:
    # In this case, the first bucket should actually take into account since
    # the any prediction between [0.0, 1.0] should be larger than the first
    # threshold. We change the bucket value from -1 to 0.
    bucket_indices = nn_ops.relu(bucket_indices)

  bucket_indices = math_ops.cast(bucket_indices, dtypes.int32)

  if multi_label:
    # We need to run bucket segment sum for each of the label class. In the
    # multi_label case, the rank of the label is 2. We first transpose it so
    # that the label dim becomes the first and we can parallel run though them.
    true_labels = array_ops.transpose_v2(true_labels)
    false_labels = array_ops.transpose_v2(false_labels)
    bucket_indices = array_ops.transpose_v2(bucket_indices)

    def gather_bucket(label_and_bucket_index):
      label, bucket_index = label_and_bucket_index[0], label_and_bucket_index[1]
      return math_ops.unsorted_segment_sum(
          data=label, segment_ids=bucket_index, num_segments=num_thresholds)
    tp_bucket_v = parallel_control_flow_ops.vectorized_map(
        gather_bucket, (true_labels, bucket_indices))
    fp_bucket_v = parallel_control_flow_ops.vectorized_map(
        gather_bucket, (false_labels, bucket_indices))
    tp = array_ops.transpose_v2(
        math_ops.cumsum(tp_bucket_v, reverse=True, axis=1))
    fp = array_ops.transpose_v2(
        math_ops.cumsum(fp_bucket_v, reverse=True, axis=1))
  else:
    tp_bucket_v = math_ops.unsorted_segment_sum(
        data=true_labels, segment_ids=bucket_indices,
        num_segments=num_thresholds)
    fp_bucket_v = math_ops.unsorted_segment_sum(
        data=false_labels, segment_ids=bucket_indices,
        num_segments=num_thresholds)
    tp = math_ops.cumsum(tp_bucket_v, reverse=True)
    fp = math_ops.cumsum(fp_bucket_v, reverse=True)

  # fn = sum(true_labels) - tp
  # tn = sum(false_labels) - fp
  if (ConfusionMatrix.TRUE_NEGATIVES in variables_to_update or
      ConfusionMatrix.FALSE_NEGATIVES in variables_to_update):
    if multi_label:
      total_true_labels = math_ops.reduce_sum(true_labels, axis=1)
      total_false_labels = math_ops.reduce_sum(false_labels, axis=1)
    else:
      total_true_labels = math_ops.reduce_sum(true_labels)
      total_false_labels = math_ops.reduce_sum(false_labels)

  update_ops = []
  if ConfusionMatrix.TRUE_POSITIVES in variables_to_update:
    variable = variables_to_update[ConfusionMatrix.TRUE_POSITIVES]
    update_ops.append(variable.assign_add(tp))
  if ConfusionMatrix.FALSE_POSITIVES in variables_to_update:
    variable = variables_to_update[ConfusionMatrix.FALSE_POSITIVES]
    update_ops.append(variable.assign_add(fp))
  if ConfusionMatrix.TRUE_NEGATIVES in variables_to_update:
    variable = variables_to_update[ConfusionMatrix.TRUE_NEGATIVES]
    tn = total_false_labels - fp
    update_ops.append(variable.assign_add(tn))
  if ConfusionMatrix.FALSE_NEGATIVES in variables_to_update:
    variable = variables_to_update[ConfusionMatrix.FALSE_NEGATIVES]
    fn = total_true_labels - tp
    update_ops.append(variable.assign_add(fn))
  return control_flow_ops.group(update_ops)


def is_evenly_distributed_thresholds(thresholds):
  """Check if the thresholds list is evenly distributed.

  We could leverage evenly distributed thresholds to use less memory when
  calculate metrcis like AUC where each individual threshold need to be
  evaluted.

  Args:
    thresholds: A python list or tuple, or 1D numpy array whose value is ranged
      in [0, 1].

  Returns:
    boolean, whether the values in the inputs are evenly distributed.
  """
  # Check the list value and see if it is evenly distributed.
  num_thresholds = len(thresholds)
  if num_thresholds < 3:
    return False
  even_thresholds = np.arange(num_thresholds,
                              dtype=np.float32) / (num_thresholds - 1)
  return np.allclose(thresholds, even_thresholds, atol=backend.epsilon())


def update_confusion_matrix_variables(variables_to_update,
                                      y_true,
                                      y_pred,
                                      thresholds,
                                      top_k=None,
                                      class_id=None,
                                      sample_weight=None,
                                      multi_label=False,
                                      label_weights=None,
                                      thresholds_distributed_evenly=False):
  """Returns op to update the given confusion matrix variables.

  For every pair of values in y_true and y_pred:

  true_positive: y_true == True and y_pred > thresholds
  false_negatives: y_true == True and y_pred <= thresholds
  true_negatives: y_true == False and y_pred <= thresholds
  false_positive: y_true == False and y_pred > thresholds

  The results will be weighted and added together. When multiple thresholds are
  provided, we will repeat the same for every threshold.

  For estimation of these metrics over a stream of data, the function creates an
  `update_op` operation that updates the given variables.

  If `sample_weight` is `None`, weights default to 1.
  Use weights of 0 to mask values.

  Args:
    variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys
      and corresponding variables to update as values.
    y_true: A `Tensor` whose shape matches `y_pred`. Will be cast to `bool`.
    y_pred: A floating point `Tensor` of arbitrary shape and whose values are in
      the range `[0, 1]`.
    thresholds: A float value, float tensor, python list, or tuple of float
      thresholds in `[0, 1]`, or NEG_INF (used when top_k is set).
    top_k: Optional int, indicates that the positive labels should be limited to
      the top k predictions.
    class_id: Optional int, limits the prediction and labels to the class
      specified by this argument.
    sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
      `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions must
      be either `1`, or the same as the corresponding `y_true` dimension).
    multi_label: Optional boolean indicating whether multidimensional
      prediction/labels should be treated as multilabel responses, or flattened
      into a single label. When True, the valus of `variables_to_update` must
      have a second dimension equal to the number of labels in y_true and
      y_pred, and those tensors must not be RaggedTensors.
    label_weights: (optional) tensor of non-negative weights for multilabel
      data. The weights are applied when calculating TP, FP, FN, and TN without
      explicit multilabel handling (i.e. when the data is to be flattened).
    thresholds_distributed_evenly: Boolean, whether the thresholds are evenly
      distributed within the list. An optimized method will be used if this is
      the case. See _update_confusion_matrix_variables_optimized() for more
      details.

  Returns:
    Update op.

  Raises:
    ValueError: If `y_pred` and `y_true` have mismatched shapes, or if
      `sample_weight` is not `None` and its shape doesn't match `y_pred`, or if
      `variables_to_update` contains invalid keys.
  """
  if multi_label and label_weights is not None:
    raise ValueError('`label_weights` for multilabel data should be handled '
                     'outside of `update_confusion_matrix_variables` when '
                     '`multi_label` is True.')
  if variables_to_update is None:
    return
  if not any(
      key for key in variables_to_update if key in list(ConfusionMatrix)):
    raise ValueError(
        'Please provide at least one valid confusion matrix '
        'variable to update. Valid variable key options are: "{}". '
        'Received: "{}"'.format(
            list(ConfusionMatrix), variables_to_update.keys()))

  variable_dtype = list(variables_to_update.values())[0].dtype

  y_true = math_ops.cast(y_true, dtype=variable_dtype)
  y_pred = math_ops.cast(y_pred, dtype=variable_dtype)

  if thresholds_distributed_evenly:
    # Check whether the thresholds has any leading or tailing epsilon added
    # for floating point imprecision. The leading and tailing threshold will be
    # handled bit differently as the corner case.
    # At this point, thresholds should be a list/array with more than 2 items,
    # and ranged between [0, 1]. See is_evenly_distributed_thresholds() for more
    # details.
    thresholds_with_epsilon = thresholds[0] < 0.0 or thresholds[-1] > 1.0

  thresholds = ops.convert_to_tensor_v2_with_dispatch(
      thresholds, dtype=variable_dtype)
  num_thresholds = thresholds.shape.as_list()[0]

  if multi_label:
    one_thresh = math_ops.equal(
        math_ops.cast(1, dtype=dtypes.int32),
        array_ops.rank(thresholds),
        name='one_set_of_thresholds_cond')
  else:
    [y_pred,
     y_true], _ = ragged_assert_compatible_and_get_flat_values([y_pred, y_true],
                                                               sample_weight)
    one_thresh = math_ops.cast(True, dtype=dtypes.bool)

  invalid_keys = [
      key for key in variables_to_update if key not in list(ConfusionMatrix)
  ]
  if invalid_keys:
    raise ValueError(
        'Invalid keys: {}. Valid variable key options are: "{}"'.format(
            invalid_keys, list(ConfusionMatrix)))

  with ops.control_dependencies([
      check_ops.assert_greater_equal(
          y_pred,
          math_ops.cast(0.0, dtype=y_pred.dtype),
          message='predictions must be >= 0'),
      check_ops.assert_less_equal(
          y_pred,
          math_ops.cast(1.0, dtype=y_pred.dtype),
          message='predictions must be <= 1')
  ]):
    if sample_weight is None:
      y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(
          y_pred, y_true)
    else:
      sample_weight = math_ops.cast(sample_weight, dtype=variable_dtype)
      y_pred, y_true, sample_weight = (
          losses_utils.squeeze_or_expand_dimensions(
              y_pred, y_true, sample_weight=sample_weight))
  y_pred.shape.assert_is_compatible_with(y_true.shape)

  if top_k is not None:
    y_pred = _filter_top_k(y_pred, top_k)
  if class_id is not None:
    y_true = y_true[..., class_id]
    y_pred = y_pred[..., class_id]

  if thresholds_distributed_evenly and compat.forward_compatible(2021, 6, 8):
    # The new approach will take effect after 2021/6/8, to give enough time
    # for Brella release to pick up the new op tf.math.cumsum with float32.
    return _update_confusion_matrix_variables_optimized(
        variables_to_update, y_true, y_pred, thresholds,
        multi_label=multi_label, sample_weights=sample_weight,
        label_weights=label_weights,
        thresholds_with_epsilon=thresholds_with_epsilon)

  pred_shape = array_ops.shape(y_pred)
  num_predictions = pred_shape[0]
  if y_pred.shape.ndims == 1:
    num_labels = 1
  else:
    num_labels = gen_math_ops.Prod(input=pred_shape[1:], axis=0)
  thresh_label_tile = array_ops.where_v2(one_thresh, num_labels,
                                         array_ops.ones([], dtype=dtypes.int32))

  # Reshape predictions and labels, adding a dim for thresholding.
  if multi_label:
    predictions_extra_dim = array_ops.expand_dims(y_pred, 0)
    labels_extra_dim = array_ops.expand_dims(
        math_ops.cast(y_true, dtype=dtypes.bool), 0)
  else:
    # Flatten predictions and labels when not multilabel.
    predictions_extra_dim = array_ops.reshape(y_pred, [1, -1])
    labels_extra_dim = array_ops.reshape(
        math_ops.cast(y_true, dtype=dtypes.bool), [1, -1])

  # Tile the thresholds for every prediction.
  if multi_label:
    thresh_pretile_shape = [num_thresholds, 1, -1]
    thresh_tiles = [1, num_predictions, thresh_label_tile]
    data_tiles = [num_thresholds, 1, 1]
  else:
    thresh_pretile_shape = [num_thresholds, -1]
    thresh_tiles = [1, num_predictions * num_labels]
    data_tiles = [num_thresholds, 1]

  thresh_tiled = array_ops.tile(
      array_ops.reshape(thresholds, thresh_pretile_shape),
      array_ops.stack(thresh_tiles))

  # Tile the predictions for every threshold.
  preds_tiled = array_ops.tile(predictions_extra_dim, data_tiles)

  # Compare predictions and threshold.
  pred_is_pos = math_ops.greater(preds_tiled, thresh_tiled)

  # Tile labels by number of thresholds
  label_is_pos = array_ops.tile(labels_extra_dim, data_tiles)

  if sample_weight is not None:
    sample_weight = weights_broadcast_ops.broadcast_weights(
        math_ops.cast(sample_weight, dtype=variable_dtype), y_pred)
    weights_tiled = array_ops.tile(
        array_ops.reshape(sample_weight, thresh_tiles), data_tiles)
  else:
    weights_tiled = None

  if label_weights is not None and not multi_label:
    label_weights = array_ops.expand_dims(label_weights, 0)
    label_weights = weights_broadcast_ops.broadcast_weights(label_weights,
                                                            y_pred)
    label_weights_tiled = array_ops.tile(
        array_ops.reshape(label_weights, thresh_tiles), data_tiles)
    if weights_tiled is None:
      weights_tiled = label_weights_tiled
    else:
      weights_tiled = math_ops.multiply(weights_tiled, label_weights_tiled)

  update_ops = []

  def weighted_assign_add(label, pred, weights, var):
    label_and_pred = math_ops.cast(
        math_ops.logical_and(label, pred), dtype=var.dtype)
    if weights is not None:
      label_and_pred *= math_ops.cast(weights, dtype=var.dtype)
    return var.assign_add(math_ops.reduce_sum(label_and_pred, 1))

  loop_vars = {
      ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos),
  }
  update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update
  update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update
  update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update

  if update_fn or update_tn:
    pred_is_neg = math_ops.logical_not(pred_is_pos)
    loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg)

  if update_fp or update_tn:
    label_is_neg = math_ops.logical_not(label_is_pos)
    loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos)
    if update_tn:
      loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = (label_is_neg, pred_is_neg)

  for matrix_cond, (label, pred) in loop_vars.items():

    if matrix_cond in variables_to_update:
      update_ops.append(
          weighted_assign_add(label, pred, weights_tiled,
                              variables_to_update[matrix_cond]))

  return control_flow_ops.group(update_ops)


def _filter_top_k(x, k):
  """Filters top-k values in the last dim of x and set the rest to NEG_INF.

  Used for computing top-k prediction values in dense labels (which has the same
  shape as predictions) for recall and precision top-k metrics.

  Args:
    x: tensor with any dimensions.
    k: the number of values to keep.

  Returns:
    tensor with same shape and dtype as x.
  """
  _, top_k_idx = nn_ops.top_k(x, k, sorted=False)
  top_k_mask = math_ops.reduce_sum(
      array_ops.one_hot(top_k_idx, array_ops.shape(x)[-1], axis=-1), axis=-2)
  return x * top_k_mask + NEG_INF * (1 - top_k_mask)


def ragged_assert_compatible_and_get_flat_values(values, mask=None):
  """If ragged, it checks the compatibility and then returns the flat_values.

     Note: If two tensors are dense, it does not check their compatibility.
     Note: Although two ragged tensors with different ragged ranks could have
           identical overall rank and dimension sizes and hence be compatible,
           we do not support those cases.
  Args:
     values: A list of potentially ragged tensor of the same ragged_rank.
     mask: A potentially ragged tensor of the same ragged_rank as elements in
       Values.

  Returns:
     A tuple in which the first element is the list of tensors and the second
     is the mask tensor. ([Values], mask). Mask and the element in Values
     are equal to the flat_values of the input arguments (if they were ragged).
  """
  if isinstance(values, list):
    is_all_ragged = \
        all(isinstance(rt, ragged_tensor.RaggedTensor) for rt in values)
    is_any_ragged = \
        any(isinstance(rt, ragged_tensor.RaggedTensor) for rt in values)
  else:
    is_all_ragged = isinstance(values, ragged_tensor.RaggedTensor)
    is_any_ragged = is_all_ragged
  if (is_all_ragged and
      ((mask is None) or isinstance(mask, ragged_tensor.RaggedTensor))):
    to_be_stripped = False
    if not isinstance(values, list):
      values = [values]
      to_be_stripped = True

    # NOTE: we leave the flat_values compatibility to
    # tf.TensorShape `assert_is_compatible_with`
    # check if both dynamic dimensions are equal and then use the flat_values.
    nested_row_split_list = [rt.nested_row_splits for rt in values]
    assertion_list = _assert_splits_match(nested_row_split_list)

    # if both are ragged sample_weights also should be ragged with same dims.
    if isinstance(mask, ragged_tensor.RaggedTensor):
      assertion_list_for_mask = _assert_splits_match(
          [nested_row_split_list[0], mask.nested_row_splits])
      with ops.control_dependencies(assertion_list_for_mask):
        mask = array_ops.expand_dims(mask.flat_values, -1)

    # values has at least 1 element.
    flat_values = []
    for value in values:
      with ops.control_dependencies(assertion_list):
        flat_values.append(array_ops.expand_dims(value.flat_values, -1))

    values = flat_values[0] if to_be_stripped else flat_values

  elif is_any_ragged:
    raise TypeError('One of the inputs does not have acceptable types.')
  # values are empty or value are not ragged and mask is ragged.
  elif isinstance(mask, ragged_tensor.RaggedTensor):
    raise TypeError('Ragged mask is not allowed with non-ragged inputs.')

  return values, mask


def _assert_splits_match(nested_splits_lists):
  """Checks that the given splits lists are identical.

  Performs static tests to ensure that the given splits lists are identical,
  and returns a list of control dependency op tensors that check that they are
  fully identical.

  Args:
    nested_splits_lists: A list of nested_splits_lists, where each split_list is
      a list of `splits` tensors from a `RaggedTensor`, ordered from outermost
      ragged dimension to innermost ragged dimension.

  Returns:
    A list of control dependency op tensors.
  Raises:
    ValueError: If the splits are not identical.
  """
  error_msg = 'Inputs must have identical ragged splits'
  for splits_list in nested_splits_lists:
    if len(splits_list) != len(nested_splits_lists[0]):
      raise ValueError(error_msg)
  return [
      check_ops.assert_equal(s1, s2, message=error_msg)  # pylint: disable=g-complex-comprehension
      for splits_list in nested_splits_lists[1:]
      for (s1, s2) in zip(nested_splits_lists[0], splits_list)
  ]
