# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adagrad optimizer implementation."""
# pylint: disable=g-classes-have-attributes

import numpy as np

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.keras import backend_config
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.training import gen_training_ops
from tensorflow.python.util.tf_export import keras_export


@keras_export('keras.optimizers.Adagrad')
class Adagrad(optimizer_v2.OptimizerV2):
  r"""Optimizer that implements the Adagrad algorithm.

  Adagrad is an optimizer with parameter-specific learning rates,
  which are adapted relative to how frequently a parameter gets
  updated during training. The more updates a parameter receives,
  the smaller the updates.

  Args:
    learning_rate: Initial value for the learning rate:
      either a floating point value,
      or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance.
      Defaults to 0.001.
      Note that `Adagrad` tends to benefit from higher initial learning rate
      values compared to other optimizers.
      To match the exact form in the original paper, use 1.0.
    initial_accumulator_value: Floating point value.
      Starting value for the accumulators (per-parameter momentum values).
      Must be non-negative.
    epsilon: Small floating point value used to maintain numerical stability.
    name: Optional name prefix for the operations created when applying
      gradients.  Defaults to `"Adagrad"`.
    **kwargs: Keyword arguments. Allowed to be one of
      `"clipnorm"` or `"clipvalue"`.
      `"clipnorm"` (float) clips gradients by norm and represents
      the maximum L2 norm of each weight variable;
      `"clipvalue"` (float) clips gradient by value and represents the
      maximum absolute value of each weight variable.

  Reference:
    - [Duchi et al., 2011](
      http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf).
  """

  _HAS_AGGREGATE_GRAD = True

  def __init__(self,
               learning_rate=0.001,
               initial_accumulator_value=0.1,
               epsilon=1e-7,
               name='Adagrad',
               **kwargs):
    if initial_accumulator_value < 0.0:
      raise ValueError('initial_accumulator_value must be non-negative: %s' %
                       initial_accumulator_value)
    if epsilon is None:
      epsilon = backend_config.epsilon()
    super(Adagrad, self).__init__(name, **kwargs)
    self._set_hyper('learning_rate', kwargs.get('lr', learning_rate))
    self._set_hyper('decay', self._initial_decay)
    self._initial_accumulator_value = initial_accumulator_value
    self.epsilon = epsilon or backend_config.epsilon()

  def _create_slots(self, var_list):
    for var in var_list:
      dtype = var.dtype.base_dtype
      init = init_ops.constant_initializer(
          self._initial_accumulator_value, dtype=dtype)
      self.add_slot(var, 'accumulator', init)

  def _prepare_local(self, var_device, var_dtype, apply_state):
    super(Adagrad, self)._prepare_local(var_device, var_dtype, apply_state)
    apply_state[(var_device, var_dtype)].update(
        dict(
            epsilon=ops.convert_to_tensor_v2_with_dispatch(
                self.epsilon, var_dtype),
            neg_lr_t=-apply_state[(var_device, var_dtype)]['lr_t'],
            zero=array_ops.zeros((), dtype=dtypes.int64)))

  def set_weights(self, weights):
    params = self.weights
    # Override set_weights for backward compatibility of Keras V1 optimizer
    # since it does not include iteration at head of the weight list. Set
    # iteration to 0.
    if len(params) == len(weights) + 1:
      weights = [np.array(0)] + weights
    super(Adagrad, self).set_weights(weights)

  @classmethod
  def from_config(cls, config, custom_objects=None):
    """Creates an optimizer from its config.

    This method is the reverse of `get_config`,
    capable of instantiating the same optimizer from the config
    dictionary.

    Args:
        config: A Python dictionary, typically the output of get_config.
        custom_objects: A Python dictionary mapping names to additional Python
          objects used to create this optimizer, such as a function used for a
          hyperparameter.

    Returns:
        An optimizer instance.
    """
    if 'initial_accumulator_value' not in config:
      config['initial_accumulator_value'] = 0.1
    if 'lr' in config:
      config['learning_rate'] = config.pop('lr')
    return cls(**config)

  def _resource_apply_dense(self, grad, var, apply_state=None):
    var_device, var_dtype = var.device, var.dtype.base_dtype
    coefficients = ((apply_state or {}).get((var_device, var_dtype))
                    or self._fallback_apply_state(var_device, var_dtype))

    acc = self.get_slot(var, 'accumulator')
    return gen_training_ops.ResourceApplyAdagradV2(
        var=var.handle,
        accum=acc.handle,
        lr=coefficients['lr_t'],
        epsilon=coefficients['epsilon'],
        grad=grad,
        use_locking=self._use_locking)

  def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
    var_device, var_dtype = var.device, var.dtype.base_dtype
    coefficients = ((apply_state or {}).get((var_device, var_dtype))
                    or self._fallback_apply_state(var_device, var_dtype))

    acc = self.get_slot(var, 'accumulator')
    return gen_training_ops.ResourceSparseApplyAdagradV2(
        var=var.handle,
        accum=acc.handle,
        lr=coefficients['lr_t'],
        epsilon=coefficients['epsilon'],
        grad=grad,
        indices=indices,
        use_locking=self._use_locking)

  def get_config(self):
    config = super(Adagrad, self).get_config()
    config.update({
        'learning_rate': self._serialize_hyperparameter('learning_rate'),
        'decay': self._initial_decay,
        'initial_accumulator_value': self._initial_accumulator_value,
        'epsilon': self.epsilon,
    })
    return config
