a
    SG5d                     @   sv   d dl mZ d dlmZmZ d dlm  mZ d dlmZ dd Z	e	fddZ
e	fd	d
ZefddZe	fddZdS )    )partial)chainminimizeN)yieldifyc                 C   s   | S )N )xr   r   Q/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/strategies/tree.py<lambda>       r	   c                 C   s<   |D ].}t | |r|| ttt||d|    S q|| S )a   Apply functions onto recursive containers (tree).

    Explanation
    ===========

    join - a dictionary mapping container types to functions
      e.g. ``{list: minimize, tuple: chain}``

    Keys are containers/iterables.  Values are functions [a] -> a.

    Examples
    ========

    >>> from sympy.strategies.tree import treeapply
    >>> tree = [(3, 2), (4, 1)]
    >>> treeapply(tree, {list: max, tuple: min})
    2

    >>> add = lambda *args: sum(args)
    >>> def mul(*args):
    ...     total = 1
    ...     for arg in args:
    ...         total *= arg
    ...     return total
    >>> treeapply(tree, {list: mul, tuple: add})
    25
    )joinleaf)
isinstancemapr   	treeapply)treer   r   typr   r   r   r      s    
r   c                 K   s&   t t|d}t| t|ttifi |S )a   Execute a strategic tree.  Select alternatives greedily

    Trees
    -----

    Nodes in a tree can be either

    function - a leaf
    list     - a selection among operations
    tuple    - a sequence of chained operations

    Textual examples
    ----------------

    Text: Run f, then run g, e.g. ``lambda x: g(f(x))``
    Code: ``(f, g)``

    Text: Run either f or g, whichever minimizes the objective
    Code: ``[f, g]``

    Textx: Run either f or g, whichever is better, then run h
    Code: ``([f, g], h)``

    Text: Either expand then simplify or try factor then foosimp. Finally print
    Code: ``([(expand, simplify), (factor, foosimp)], print)``

    Objective
    ---------

    "Better" is determined by the objective keyword.  This function makes
    choices to minimize the objective.  It defaults to the identity.

    Examples
    ========

    >>> from sympy.strategies.tree import greedy
    >>> inc    = lambda x: x + 1
    >>> dec    = lambda x: x - 1
    >>> double = lambda x: 2*x

    >>> tree = [inc, (dec, double)] # either inc or dec-then-double
    >>> fn = greedy(tree)
    >>> fn(4)  # lowest value comes from the inc
    5
    >>> fn(1)  # lowest value comes from dec then double
    0

    This function selects between options in a tuple.  The result is chosen that
    minimizes the objective function.

    >>> fn = greedy(tree, objective=lambda x: -x)  # maximize
    >>> fn(4)  # highest value comes from the dec then double
    6
    >>> fn(1)  # highest value comes from the inc
    2

    Greediness
    ----------

    This is a greedy algorithm.  In the example:

        ([a, b], c)  # do either a or b, then do c

    the choice between running ``a`` or ``b`` is made without foresight to c
    )	objective)r   r   r   listtupler   )r   r   kwargsoptimizer   r   r   greedy*   s    Br   c                 C   s   t | ttjttji|dS )a   Execute a strategic tree.  Return all possibilities.

    Returns a lazy iterator of all possible results

    Exhaustiveness
    --------------

    This is an exhaustive algorithm.  In the example

        ([a, b], [c, d])

    All of the results from

        (a, c), (b, c), (a, d), (b, d)

    are returned.  This can lead to combinatorial blowup.

    See sympy.strategies.greedy for details on input
    )r   )r   r   branch	multiplexr   r   )r   r   r   r   r   
allresultso   s    r   c                    s    fddS )Nc                    s    t ttfi  | dS )N)key)minr   r   )exprr   r   r   r   r   r	      s   zbrute.<locals>.<lambda>r   )r   r   r   r   r   r   brute   s    r   )	functoolsr   sympy.strategiesr   r   Zsympy.strategies.branch
strategiesr   r   identityr   r   r   r   r   r   r   r   <module>   s   "E