a
    SG5d­  ã                   @   sp   d dl mZmZmZmZ d dlmZ d dlmZ d dl	m
Z
mZ d dlmZ d dlmZmZ dd„ Zd	d
„ ZdS )é    )ÚFunctionÚPowÚsympifyÚExpr)Ú
Relational)ÚS)ÚPolyÚ	decompose)Ú	func_name)ÚMinÚMaxc                    sä  t | ƒ} t| tƒrt| tƒr,tdt| ƒ ƒ‚ˆ | jvr<| gS t| ttfƒr”| j	rd| j
tjkrd| j}n
| jd }|ˆ kr|| gS |  |ˆ ¡gt|ˆ ƒ S t| ttfƒrVt| jƒ}d}t|ƒD ]v\}}| ˆ ¡sÎqºt|ˆ ƒ}t|ƒdkrîˆ g| }|du r|dd… }n|dd… |kr$ˆ g} q2|d ||< qº|d ˆ krF| gS | j|Ž g| S t| ƒ}tt‡ fdd„|jƒƒ}	t|	ƒdkrº|	d ˆ krº|  |	d ˆ ¡}
|	d }|
gt|ˆ ƒ S z
t| ƒW S  tyÞ   | g Y S 0 dS )a9  
    Computes General functional decomposition of ``f``.
    Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``,
    where::
              f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))

    Note: This is a General decomposition function. It also decomposes
    Polynomials. For only Polynomial decomposition see ``decompose`` in polys.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy import decompogen, sqrt, sin, cos
    >>> decompogen(sin(cos(x)), x)
    [sin(x), cos(x)]
    >>> decompogen(sin(x)**2 + sin(x) + 1, x)
    [x**2 + x + 1, sin(x)]
    >>> decompogen(sqrt(6*x**2 - 5), x)
    [sqrt(x), 6*x**2 - 5]
    >>> decompogen(sin(sqrt(cos(x**2 + 1))), x)
    [sin(x), sqrt(x), cos(x), x**2 + 1]
    >>> decompogen(x**4 + 2*x**3 - x - 1, x)
    [x**2 - x - 1, x**2 + x]

    zexpecting Expr but got: `%s`r   Né   c                    s
   ˆ | j v S )N)Úfree_symbols)Úx©Úsymbol© úT/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/solvers/decompogen.pyÚ<lambda>M   ó    zdecompogen.<locals>.<lambda>)r   Ú
isinstancer   r   Ú	TypeErrorr
   r   r   r   Úis_PowÚbaser   ÚExp1ÚexpÚargsÚsubsÚ
decompogenr   r   ÚlistÚ	enumerateÚhas_freeÚlenÚfuncr   ÚfilterÚgensr	   Ú
ValueError)Úfr   Úargr   Úd0ÚiÚaÚdÚfpr%   Úf1Úf2r   r   r   r   	   sP    







r   c                 C   sP   t | ƒdkr| d S | d  || d ¡}t | ƒdkr8|S t|g| dd…  |ƒS )a0  
    Returns the composition of functions.
    Given a list of functions ``g_s``, returns their composition ``f``,
    where:
        f = g_1 o g_2 o .. o g_n

    Note: This is a General composition function. It also composes Polynomials.
    For only Polynomial composition see ``compose`` in polys.

    Examples
    ========

    >>> from sympy.solvers.decompogen import compogen
    >>> from sympy.abc import x
    >>> from sympy import sqrt, sin, cos
    >>> compogen([sin(x), cos(x)], x)
    sin(cos(x))
    >>> compogen([x**2 + x + 1, sin(x)], x)
    sin(x)**2 + sin(x) + 1
    >>> compogen([sqrt(x), 6*x**2 - 5], x)
    sqrt(6*x**2 - 5)
    >>> compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x)
    sin(sqrt(cos(x**2 + 1)))
    >>> compogen([x**2 - x - 1, x**2 + x], x)
    -x**2 - x + (x**2 + x)**2 - 1
    r   r   é   N)r"   r   Úcompogen)Úg_sr   Úfoor   r   r   r1   [   s    r1   N)Ú
sympy.corer   r   r   r   Úsympy.core.relationalr   Zsympy.core.singletonr   Úsympy.polysr   r	   Úsympy.utilities.miscr
   Ú(sympy.functions.elementary.miscellaneousr   r   r   r1   r   r   r   r   Ú<module>   s   R