"""
Javascript code printer

The JavascriptCodePrinter converts single SymPy expressions into single
Javascript expressions, using the functions defined in the Javascript
Math object where possible.

"""

from typing import Any, Dict as tDict

from sympy.core import S
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE


# dictionary mapping SymPy function to (argument_conditions, Javascript_function).
# Used in JavascriptCodePrinter._print_Function(self)
known_functions = {
    'Abs': 'Math.abs',
    'acos': 'Math.acos',
    'acosh': 'Math.acosh',
    'asin': 'Math.asin',
    'asinh': 'Math.asinh',
    'atan': 'Math.atan',
    'atan2': 'Math.atan2',
    'atanh': 'Math.atanh',
    'ceiling': 'Math.ceil',
    'cos': 'Math.cos',
    'cosh': 'Math.cosh',
    'exp': 'Math.exp',
    'floor': 'Math.floor',
    'log': 'Math.log',
    'Max': 'Math.max',
    'Min': 'Math.min',
    'sign': 'Math.sign',
    'sin': 'Math.sin',
    'sinh': 'Math.sinh',
    'tan': 'Math.tan',
    'tanh': 'Math.tanh',
}


class JavascriptCodePrinter(CodePrinter):
    """"A Printer to convert Python expressions to strings of JavaScript code
    """
    printmethod = '_javascript'
    language = 'JavaScript'

    _default_settings = {
        'order': None,
        'full_prec': 'auto',
        'precision': 17,
        'user_functions': {},
        'human': True,
        'allow_unknown_functions': False,
        'contract': True,
    }  # type: tDict[str, Any]

    def __init__(self, settings={}):
        CodePrinter.__init__(self, settings)
        self.known_functions = dict(known_functions)
        userfuncs = settings.get('user_functions', {})
        self.known_functions.update(userfuncs)

    def _rate_index_position(self, p):
        return p*5

    def _get_statement(self, codestring):
        return "%s;" % codestring

    def _get_comment(self, text):
        return "// {}".format(text)

    def _declare_number_const(self, name, value):
        return "var {} = {};".format(name, value.evalf(self._settings['precision']))

    def _format_code(self, lines):
        return self.indent_code(lines)

    def _traverse_matrix_indices(self, mat):
        rows, cols = mat.shape
        return ((i, j) for i in range(rows) for j in range(cols))

    def _get_loop_opening_ending(self, indices):
        open_lines = []
        close_lines = []
        loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
        for i in indices:
            # Javascript arrays start at 0 and end at dimension-1
            open_lines.append(loopstart % {
                'varble': self._print(i.label),
                'start': self._print(i.lower),
                'end': self._print(i.upper + 1)})
            close_lines.append("}")
        return open_lines, close_lines

    def _print_Pow(self, expr):
        PREC = precedence(expr)
        if expr.exp == -1:
            return '1/%s' % (self.parenthesize(expr.base, PREC))
        elif expr.exp == 0.5:
            return 'Math.sqrt(%s)' % self._print(expr.base)
        elif expr.exp == S.One/3:
            return 'Math.cbrt(%s)' % self._print(expr.base)
        else:
            return 'Math.pow(%s, %s)' % (self._print(expr.base),
                                 self._print(expr.exp))

    def _print_Rational(self, expr):
        p, q = int(expr.p), int(expr.q)
        return '%d/%d' % (p, q)

    def _print_Mod(self, expr):
        num, den = expr.args
        PREC = precedence(expr)
        snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args]
        # % is remainder (same sign as numerator), not modulo (same sign as
        # denominator), in js. Hence, % only works as modulo if both numbers
        # have the same sign
        if (num.is_nonnegative and den.is_nonnegative or
            num.is_nonpositive and den.is_nonpositive):
            return f"{snum} % {sden}"
        return f"(({snum} % {sden}) + {sden}) % {sden}"

    def _print_Relational(self, expr):
        lhs_code = self._print(expr.lhs)
        rhs_code = self._print(expr.rhs)
        op = expr.rel_op
        return "{} {} {}".format(lhs_code, op, rhs_code)

    def _print_Indexed(self, expr):
        # calculate index for 1d array
        dims = expr.shape
        elem = S.Zero
        offset = S.One
        for i in reversed(range(expr.rank)):
            elem += expr.indices[i]*offset
            offset *= dims[i]
        return "%s[%s]" % (self._print(expr.base.label), self._print(elem))

    def _print_Idx(self, expr):
        return self._print(expr.label)

    def _print_Exp1(self, expr):
        return "Math.E"

    def _print_Pi(self, expr):
        return 'Math.PI'

    def _print_Infinity(self, expr):
        return 'Number.POSITIVE_INFINITY'

    def _print_NegativeInfinity(self, expr):
        return 'Number.NEGATIVE_INFINITY'

    def _print_Piecewise(self, expr):
        from sympy.codegen.ast import Assignment
        if expr.args[-1].cond != True:
            # We need the last conditional to be a True, otherwise the resulting
            # function may not return a result.
            raise ValueError("All Piecewise expressions must contain an "
                             "(expr, True) statement to be used as a default "
                             "condition. Without one, the generated "
                             "expression may not evaluate to anything under "
                             "some condition.")
        lines = []
        if expr.has(Assignment):
            for i, (e, c) in enumerate(expr.args):
                if i == 0:
                    lines.append("if (%s) {" % self._print(c))
                elif i == len(expr.args) - 1 and c == True:
                    lines.append("else {")
                else:
                    lines.append("else if (%s) {" % self._print(c))
                code0 = self._print(e)
                lines.append(code0)
                lines.append("}")
            return "\n".join(lines)
        else:
            # The piecewise was used in an expression, need to do inline
            # operators. This has the downside that inline operators will
            # not work for statements that span multiple lines (Matrix or
            # Indexed expressions).
            ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e))
                    for e, c in expr.args[:-1]]
            last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
            return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])

    def _print_MatrixElement(self, expr):
        return "{}[{}]".format(self.parenthesize(expr.parent,
            PRECEDENCE["Atom"], strict=True),
            expr.j + expr.i*expr.parent.shape[1])

    def indent_code(self, code):
        """Accepts a string of code or a list of code lines"""

        if isinstance(code, str):
            code_lines = self.indent_code(code.splitlines(True))
            return ''.join(code_lines)

        tab = "   "
        inc_token = ('{', '(', '{\n', '(\n')
        dec_token = ('}', ')')

        code = [ line.lstrip(' \t') for line in code ]

        increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
        decrease = [ int(any(map(line.startswith, dec_token)))
                     for line in code ]

        pretty = []
        level = 0
        for n, line in enumerate(code):
            if line in ('', '\n'):
                pretty.append(line)
                continue
            level -= decrease[n]
            pretty.append("%s%s" % (tab*level, line))
            level += increase[n]
        return pretty


def jscode(expr, assign_to=None, **settings):
    """Converts an expr to a string of javascript code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
        line-wrapping, or for expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi [default=15].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations. Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, js_function_string)]. See
        below for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].

    Examples
    ========

    >>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs
    >>> x, tau = symbols("x, tau")
    >>> jscode((2*tau)**Rational(7, 2))
    '8*Math.sqrt(2)*Math.pow(tau, 7/2)'
    >>> jscode(sin(x), assign_to="s")
    's = Math.sin(x);'

    Custom printing can be defined for certain types by passing a dictionary of
    "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
    dictionary value can be a list of tuples i.e. [(argument_test,
    js_function_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "Abs": [(lambda x: not x.is_integer, "fabs"),
    ...           (lambda x: x.is_integer, "ABS")]
    ... }
    >>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions)
    'fabs(x) + CEIL(x)'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(jscode(expr, tau))
    if (x > 0) {
       tau = x + 1;
    }
    else {
       tau = x;
    }

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> jscode(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'

    Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
    must be provided to ``assign_to``. Note that any expression that can be
    generated normally can also exist inside a Matrix:

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(jscode(mat, A))
    A[0] = Math.pow(x, 2);
    if (x > 0) {
       A[1] = x + 1;
    }
    else {
       A[1] = x;
    }
    A[2] = Math.sin(x);
    """

    return JavascriptCodePrinter(settings).doprint(expr, assign_to)


def print_jscode(expr, **settings):
    """Prints the Javascript representation of the given expression.

       See jscode for the meaning of the optional arguments.
    """
    print(jscode(expr, **settings))
