a
    RG5dUF                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ dd	lmZ dd
lmZ G dd deZG dd deZG dd deZG dd dZG dd deeZe  Ze_G dd deeZe  Ze_dS )zDomains of Gaussian type.    )I)CoercionFailed)ZZ)QQ)AlgebraicField)Domain)DomainElement)Field)Ringc                       s   e Zd ZdZdZdZdZd5ddZe fddZ	d	d
 Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zedd Zdd ZeZdd Zdd  Zd!d" ZeZd#d$ Zd%d& Zd'd( Zd)d* Zd+d, Zd-d. Zd/d0 Zd1d2 Z d3d4 Z!  Z"S )6GaussianElementz1Base class for elements of Gaussian type domains.N)xyr   c                 C   s   | j j}| ||||S N)baseconvertnew)clsr   r   conv r   _/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/polys/domains/gaussiandomains.py__new__   s    zGaussianElement.__new__c                    s   t  | }||_||_|S )z0Create a new GaussianElement of the same domain.)superr   r   r   )r   r   r   obj	__class__r   r   r      s    zGaussianElement.newc                 C   s   | j S )z4The domain that this is an element of (ZZ_I or QQ_I))_parentselfr   r   r   parent!   s    zGaussianElement.parentc                 C   s   t | j| jfS r   )hashr   r   r   r   r   r   __hash__%   s    zGaussianElement.__hash__c                 C   s,   t || jr$| j|jko"| j|jkS tS d S r   )
isinstancer   r   r   NotImplementedr   otherr   r   r   __eq__(   s    zGaussianElement.__eq__c                 C   s&   t |tstS | j| jg|j|jgk S r   )r!   r   r"   r   r   r#   r   r   r   __lt__.   s    
zGaussianElement.__lt__c                 C   s   | S r   r   r   r   r   r   __pos__3   s    zGaussianElement.__pos__c                 C   s   |  | j | j S r   r   r   r   r   r   r   r   __neg__6   s    zGaussianElement.__neg__c                 C   s   d| j j| j| jf S )Nz
%s(%s, %s))r   repr   r   r   r   r   r   __repr__9   s    zGaussianElement.__repr__c                 C   s   t | j| S r   )strr   to_sympyr   r   r   r   __str__<   s    zGaussianElement.__str__c                 C   s<   t || s0z| j|}W n ty.   Y dS 0 |j|jfS )N)NN)r!   r   r   r   r   r   )r   r$   r   r   r   _get_xy?   s    
zGaussianElement._get_xyc                 C   s6   |  |\}}|d ur.| | j| | j| S tS d S r   r/   r   r   r   r"   r   r$   r   r   r   r   r   __add__H   s    zGaussianElement.__add__c                 C   s6   |  |\}}|d ur.| | j| | j| S tS d S r   r0   r1   r   r   r   __sub__Q   s    zGaussianElement.__sub__c                 C   s6   |  |\}}|d ur.| || j || j S tS d S r   r0   r1   r   r   r   __rsub__X   s    zGaussianElement.__rsub__c                 C   sJ   |  |\}}|d urB| | j| | j|  | j| | j|  S tS d S r   r0   r1   r   r   r   __mul___   s    ,zGaussianElement.__mul__c                 C   s   |dkr|  ddS |dk r,d|  |  } }|dkr8| S | }|d rH| n| jj}|d }|r~||9 }|d rt||9 }|d }qX|S )Nr         )r   r   one)r   expZpow2prodr   r   r   __pow__h   s    
zGaussianElement.__pow__c                 C   s   t | jpt | jS r   )boolr   r   r   r   r   r   __bool__y   s    zGaussianElement.__bool__c                 C   sN   | j dkr| jdkrdS dS | j dk r8| jdk r4dS dS | jdkrFdS dS dS )zIReturn quadrant index 0-3.

        0 is included in quadrant 0.
        r   r6   r7      N)r   r   r   r   r   r   quadrant|   s
    

zGaussianElement.quadrantc                 C   s6   z| j |}W n ty&   t Y S 0 || S d S r   )r   r   r   r"   
__divmod__r#   r   r   r   __rdivmod__   s
    
zGaussianElement.__rdivmod__c                 C   s4   zt |}W n ty$   t Y S 0 || S d S r   )QQ_Ir   r   r"   __truediv__r#   r   r   r   __rtruediv__   s
    
zGaussianElement.__rtruediv__c                 C   s   |  |}|tu r|S |d S Nr   r@   r"   r   r$   qrr   r   r   __floordiv__   s    
zGaussianElement.__floordiv__c                 C   s   |  |}|tu r|S |d S rE   rA   r"   rG   r   r   r   __rfloordiv__   s    
zGaussianElement.__rfloordiv__c                 C   s   |  |}|tu r|S |d S Nr6   rF   rG   r   r   r   __mod__   s    
zGaussianElement.__mod__c                 C   s   |  |}|tu r|S |d S rL   rJ   rG   r   r   r   __rmod__   s    
zGaussianElement.__rmod__)r   )#__name__
__module____qualname____doc__r   r   	__slots__r   classmethodr   r   r    r%   r&   r'   r)   r+   r.   r/   r2   __radd__r3   r4   r5   __rmul__r;   r=   r?   rA   rD   rI   rK   rM   rN   __classcell__r   r   r   r   r      s@   

r   c                   @   s$   e Zd ZdZeZdd Zdd ZdS )GaussianIntegerzGaussian integer: domain element for :ref:`ZZ_I`

        >>> from sympy import ZZ_I
        >>> z = ZZ_I(2, 3)
        >>> z
        (2 + 3*I)
        >>> type(z)
        <class 'sympy.polys.domains.gaussiandomains.GaussianInteger'>
    c                 C   s   t | | S )Return a Gaussian rational.)rB   r   r#   r   r   r   rC      s    zGaussianInteger.__truediv__c           
      C   s   |st d| | |\}}|d u r,tS | j| | j|  | j | | j|   }}|| ||  }d| | d|  }d| | d|  }t||}	|	| |	|  fS )Nzdivmod({}, 0)r7   )ZeroDivisionErrorformatr/   r"   r   r   rX   )
r   r$   r   r   abcqxqyqr   r   r   r@      s    ,
zGaussianInteger.__divmod__N)rO   rP   rQ   rR   r   r   rC   r@   r   r   r   r   rX      s   	rX   c                   @   s$   e Zd ZdZeZdd Zdd ZdS )GaussianRationala  Gaussian rational: domain element for :ref:`QQ_I`

        >>> from sympy import QQ_I, QQ
        >>> z = QQ_I(QQ(2, 3), QQ(4, 5))
        >>> z
        (2/3 + 4/5*I)
        >>> type(z)
        <class 'sympy.polys.domains.gaussiandomains.GaussianRational'>
    c                 C   sp   |st d| | |\}}|du r,tS || ||  }t| j| | j|  | | j | | j|  | S )rY   z{} / 0N)rZ   r[   r/   r"   rb   r   r   )r   r$   r   r   r^   r   r   r   rC      s    zGaussianRational.__truediv__c                 C   sN   z| j |}W n ty&   t Y S 0 |s<td| n| | tjfS d S )Nz{} % 0)r   r   r   r"   rZ   r[   rB   zeror#   r   r   r   r@      s    
zGaussianRational.__divmod__N)rO   rP   rQ   rR   r   r   rC   r@   r   r   r   r   rb      s   	rb   c                   @   s   e Zd ZdZdZdZdZdZdZdd Z	dd Z
dd	 Zd
d Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd d! ZdS )"GaussianDomainz Base class for Gaussian domains.NTc                 C   s    | j j}||jt||j  S )z!Convert ``a`` to a SymPy object. )domr-   r   r   r   )r   r\   r   r   r   r   r-      s    zGaussianDomain.to_sympyc                 C   sf   |  \}}| j|}|s(| |dS | \}}| j|}|tu rT| ||S td|dS )z)Convert a SymPy object to ``self.dtype``.r   z{} is not GaussianN)as_coeff_Addre   
from_sympyr   as_coeff_Mulr   r   r[   )r   r\   rr]   r   r   r   r   r   rg     s    zGaussianDomain.from_sympyc                 G   s
   | j | S )z$Inject generators into this domain. )	poly_ring)r   gensr   r   r   inject  s    zGaussianDomain.injectc                 C   s   | j |   }|S r   )unitsr?   )r   dunitr   r   r   canonical_unit  s    zGaussianDomain.canonical_unitc                 C   s   dS z/Returns ``False`` for any ``GaussianElement``. Fr   r   elementr   r   r   is_negative  s    zGaussianDomain.is_negativec                 C   s   dS rq   r   rr   r   r   r   is_positive  s    zGaussianDomain.is_positivec                 C   s   dS rq   r   rr   r   r   r   is_nonnegative   s    zGaussianDomain.is_nonnegativec                 C   s   dS rq   r   rr   r   r   r   is_nonpositive$  s    zGaussianDomain.is_nonpositivec                 C   s   | |S )z%Convert a GMPY mpz to ``self.dtype``.r   K1r\   K0r   r   r   from_ZZ_gmpy(  s    zGaussianDomain.from_ZZ_gmpyc                 C   s   | |S z.Convert a ZZ_python element to ``self.dtype``.r   rx   r   r   r   from_ZZ,  s    zGaussianDomain.from_ZZc                 C   s   | |S r|   r   rx   r   r   r   from_ZZ_python0  s    zGaussianDomain.from_ZZ_pythonc                 C   s   | |S z%Convert a GMPY mpq to ``self.dtype``.r   rx   r   r   r   from_QQ4  s    zGaussianDomain.from_QQc                 C   s   | |S r   r   rx   r   r   r   from_QQ_gmpy8  s    zGaussianDomain.from_QQ_gmpyc                 C   s   | |S )z.Convert a QQ_python element to ``self.dtype``.r   rx   r   r   r   from_QQ_python<  s    zGaussianDomain.from_QQ_pythonc                 C   s$   |j jd tkr | ||S dS )z9Convert an element from ZZ<I> or QQ<I> to ``self.dtype``.r   N)extargsr   rg   r-   rx   r   r   r   from_AlgebraicField@  s    z"GaussianDomain.from_AlgebraicField)rO   rP   rQ   rR   re   is_Numericalis_Exacthas_assoc_Ringhas_assoc_Fieldr-   rg   rl   rp   rt   ru   rv   rw   r{   r}   r~   r   r   r   r   r   r   r   r   rd      s*   rd   c                   @   s   e Zd ZdZeZeZeededZeededZ	eededZ
e	e
e	 e
 fZdZdZdZdd Zdd	 Zd
d Zdd Zdd Zdd Zdd Zdd ZdS )GaussianIntegerRinga{
  Ring of Gaussian integers ``ZZ_I``

    The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]`
    as a :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    By default a :py:class:`~.Poly` created from an expression with
    coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`)
    will have the domain :ref:`ZZ_I`.

    >>> from sympy import Poly, Symbol, I
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + I)
    >>> p
    Poly(x**2 + I, x, domain='ZZ_I')
    >>> p.domain
    ZZ_I

    The :ref:`ZZ_I` domain can be used to factorise polynomials that are
    reducible over the Gaussian integers.

    >>> from sympy import factor
    >>> factor(x**2 + 1)
    x**2 + 1
    >>> factor(x**2 + 1, domain='ZZ_I')
    (x - I)*(x + I)

    The corresponding `field of fractions`_ is the domain of the Gaussian
    rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_
    of :ref:`QQ_I`.

    >>> from sympy import ZZ_I, QQ_I
    >>> ZZ_I.get_field()
    QQ_I
    >>> QQ_I.get_ring()
    ZZ_I

    When using the domain directly :ref:`ZZ_I` can be used as a constructor.

    >>> ZZ_I(3, 4)
    (3 + 4*I)
    >>> ZZ_I(5)
    (5 + 0*I)

    The domain elements of :ref:`ZZ_I` are instances of
    :py:class:`~.GaussianInteger` which support the rings operations
    ``+,-,*,**``.

    >>> z1 = ZZ_I(5, 1)
    >>> z2 = ZZ_I(2, 3)
    >>> z1
    (5 + 1*I)
    >>> z2
    (2 + 3*I)
    >>> z1 + z2
    (7 + 4*I)
    >>> z1 * z2
    (7 + 17*I)
    >>> z1 ** 2
    (24 + 10*I)

    Both floor (``//``) and modulo (``%``) division work with
    :py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method).

    >>> z3, z4 = ZZ_I(5), ZZ_I(1, 3)
    >>> z3 // z4  # floor division
    (1 + -1*I)
    >>> z3 % z4   # modulo division (remainder)
    (1 + -2*I)
    >>> (z3//z4)*z4 + z3%z4 == z3
    True

    True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The
    :py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when
    exact division is possible.

    >>> z1 / z2
    (1 + -1*I)
    >>> ZZ_I.exquo(z1, z2)
    (1 + -1*I)
    >>> z3 / z4
    (1/2 + -3/2*I)
    >>> ZZ_I.exquo(z3, z4)
    Traceback (most recent call last):
        ...
    ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I

    The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any
    two elements.

    >>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2))
    (2 + 0*I)
    >>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1))
    (2 + 1*I)

    .. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer
    .. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor

    r   r6   ZZ_ITc                 C   s   dS )zFor constructing ZZ_I.Nr   r   r   r   r   __init__  s    zGaussianIntegerRing.__init__c                 C   s   | S z)Returns a ring associated with ``self``. r   r   r   r   r   get_ring  s    zGaussianIntegerRing.get_ringc                 C   s   t S z*Returns a field associated with ``self``. )rB   r   r   r   r   	get_field  s    zGaussianIntegerRing.get_fieldc                    s:   |  | | 9 }t fdd|D }|r6|f| S |S )zReturn first quadrant element associated with ``d``.

        Also multiply the other arguments by the same power of i.
        c                 3   s   | ]}|  V  qd S r   r   ).0r\   ro   r   r   	<genexpr>      z0GaussianIntegerRing.normalize.<locals>.<genexpr>)rp   tuple)r   rn   r   r   r   r   	normalize  s    
zGaussianIntegerRing.normalizec                 C   s   |r|||  }}q |  |S )z-Greatest common divisor of a and b over ZZ_I.)r   r   r\   r]   r   r   r   gcd  s    zGaussianIntegerRing.gcdc                 C   s   || |  || S )z+Least common multiple of a and b over ZZ_I.)r   r   r   r   r   lcm  s    zGaussianIntegerRing.lcmc                 C   s   |S )zConvert a ZZ_I element to ZZ_I.r   rx   r   r   r   from_GaussianIntegerRing  s    z,GaussianIntegerRing.from_GaussianIntegerRingc                 C   s   |  t|jt|jS )zConvert a QQ_I element to ZZ_I.)r   r   r   r   r   rx   r   r   r   from_GaussianRationalField  s    z.GaussianIntegerRing.from_GaussianRationalFieldN)rO   rP   rQ   rR   r   re   rX   dtyperc   r8   	imag_unitrm   r*   is_GaussianRingis_ZZ_Ir   r   r   r   r   r   r   r   r   r   r   r   r   F  s$   c
r   c                   @   s   e Zd ZdZeZeZeededZeededZ	eededZ
e	e
e	 e
 fZdZdZdZdd Zdd	 Zd
d Zdd Zdd Zdd Zdd Zdd ZdS )GaussianRationalFielda  Field of Gaussian rationals ``QQ_I``

    The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)`
    as a :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    By default a :py:class:`~.Poly` created from an expression with
    coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`)
    will have the domain :ref:`QQ_I`.

    >>> from sympy import Poly, Symbol, I
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + I/2)
    >>> p
    Poly(x**2 + I/2, x, domain='QQ_I')
    >>> p.domain
    QQ_I

    The polys option ``gaussian=True`` can be used to specify that the domain
    should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are
    all integers.

    >>> Poly(x**2)
    Poly(x**2, x, domain='ZZ')
    >>> Poly(x**2 + I)
    Poly(x**2 + I, x, domain='ZZ_I')
    >>> Poly(x**2/2)
    Poly(1/2*x**2, x, domain='QQ')
    >>> Poly(x**2, gaussian=True)
    Poly(x**2, x, domain='QQ_I')
    >>> Poly(x**2 + I, gaussian=True)
    Poly(x**2 + I, x, domain='QQ_I')
    >>> Poly(x**2/2, gaussian=True)
    Poly(1/2*x**2, x, domain='QQ_I')

    The :ref:`QQ_I` domain can be used to factorise polynomials that are
    reducible over the Gaussian rationals.

    >>> from sympy import factor, QQ_I
    >>> factor(x**2/4 + 1)
    (x**2 + 4)/4
    >>> factor(x**2/4 + 1, domain='QQ_I')
    (x - 2*I)*(x + 2*I)/4
    >>> factor(x**2/4 + 1, domain=QQ_I)
    (x - 2*I)*(x + 2*I)/4

    It is also possible to specify the :ref:`QQ_I` domain explicitly with
    polys functions like :py:func:`~.apart`.

    >>> from sympy import apart
    >>> apart(1/(1 + x**2))
    1/(x**2 + 1)
    >>> apart(1/(1 + x**2), domain=QQ_I)
    I/(2*(x + I)) - I/(2*(x - I))

    The corresponding `ring of integers`_ is the domain of the Gaussian
    integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_
    of :ref:`ZZ_I`.

    >>> from sympy import ZZ_I, QQ_I, QQ
    >>> ZZ_I.get_field()
    QQ_I
    >>> QQ_I.get_ring()
    ZZ_I

    When using the domain directly :ref:`QQ_I` can be used as a constructor.

    >>> QQ_I(3, 4)
    (3 + 4*I)
    >>> QQ_I(5)
    (5 + 0*I)
    >>> QQ_I(QQ(2, 3), QQ(4, 5))
    (2/3 + 4/5*I)

    The domain elements of :ref:`QQ_I` are instances of
    :py:class:`~.GaussianRational` which support the field operations
    ``+,-,*,**,/``.

    >>> z1 = QQ_I(5, 1)
    >>> z2 = QQ_I(2, QQ(1, 2))
    >>> z1
    (5 + 1*I)
    >>> z2
    (2 + 1/2*I)
    >>> z1 + z2
    (7 + 3/2*I)
    >>> z1 * z2
    (19/2 + 9/2*I)
    >>> z2 ** 2
    (15/4 + 2*I)

    True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and
    is always exact.

    >>> z1 / z2
    (42/17 + -2/17*I)
    >>> QQ_I.exquo(z1, z2)
    (42/17 + -2/17*I)
    >>> z1 == (z1/z2)*z2
    True

    Both floor (``//``) and modulo (``%``) division can be used with
    :py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`)
    but division is always exact so there is no remainder.

    >>> z1 // z2
    (42/17 + -2/17*I)
    >>> z1 % z2
    (0 + 0*I)
    >>> QQ_I.div(z1, z2)
    ((42/17 + -2/17*I), (0 + 0*I))
    >>> (z1//z2)*z2 + z1%z2 == z1
    True

    .. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational
    r   r6   rB   Tc                 C   s   dS )zFor constructing QQ_I.Nr   r   r   r   r   r   a  s    zGaussianRationalField.__init__c                 C   s   t S r   )r   r   r   r   r   r   d  s    zGaussianRationalField.get_ringc                 C   s   | S r   r   r   r   r   r   r   h  s    zGaussianRationalField.get_fieldc                 C   s   t | jtS )z0Get equivalent domain as an ``AlgebraicField``. )r   re   r   r   r   r   r   as_AlgebraicFieldl  s    z'GaussianRationalField.as_AlgebraicFieldc                 C   s   |   }||| | S )zGet the numerator of ``a``.)r   r   denom)r   r\   r   r   r   r   numerp  s    zGaussianRationalField.numerc                 C   s@   | j  }| j }|  }|||j||j}|||jS )zGet the denominator of ``a``.)re   r   r   r   r   r   rc   )r   r\   r   r   r   Zdenom_ZZr   r   r   r   u  s
    
zGaussianRationalField.denomc                 C   s   |  |j|jS )zConvert a ZZ_I element to QQ_I.r(   rx   r   r   r   r   }  s    z.GaussianRationalField.from_GaussianIntegerRingc                 C   s   |S )zConvert a QQ_I element to QQ_I.r   rx   r   r   r   r     s    z0GaussianRationalField.from_GaussianRationalFieldN)rO   rP   rQ   rR   r   re   rb   r   rc   r8   r   rm   r*   is_GaussianFieldis_QQ_Ir   r   r   r   r   r   r   r   r   r   r   r   r     s$   tr   N)rR   sympy.core.numbersr   sympy.polys.polyerrorsr   Zsympy.polys.domains.integerringr   Z!sympy.polys.domains.rationalfieldr   Z"sympy.polys.domains.algebraicfieldr   Zsympy.polys.domains.domainr   !sympy.polys.domains.domainelementr   sympy.polys.domains.fieldr	   sympy.polys.domains.ringr
   r   rX   rb   rd   r   r   r   r   rB   r   r   r   r   <module>   s(    (#R  &