a
    RG5d‹*  ã                   @   s@   d Z ddlmZ ddlmZ G dd„ deƒZG dd„ deƒZdS )	z-Computations with ideals of polynomial rings.é    )ÚCoercionFailed)ÚIntegerPowerablec                   @   s  e Zd ZdZdd„ Zdd„ Zdd„ Zdd	„ Zd
d„ Zdd„ Z	dd„ Z
dd„ Zdd„ Zdd„ Zdd„ Zdd„ Zdd„ Zdd„ Zdd„ Zd d!„ Zd"d#„ Zd$d%„ Zd&d'„ Zd(d)„ Zd*d+„ Zd,d-„ Zd.d/„ Zd0d1„ Zd2d3„ Zd4d5„ ZeZd6d7„ ZeZ d8d9„ Z!d:d;„ Z"d<d=„ Z#d>d?„ Z$d@S )AÚIdealaŠ  
    Abstract base class for ideals.

    Do not instantiate - use explicit constructors in the ring class instead:

    >>> from sympy import QQ
    >>> from sympy.abc import x
    >>> QQ.old_poly_ring(x).ideal(x+1)
    <x + 1>

    Attributes

    - ring - the ring this ideal belongs to

    Non-implemented methods:

    - _contains_elem
    - _contains_ideal
    - _quotient
    - _intersect
    - _union
    - _product
    - is_whole_ring
    - is_zero
    - is_prime, is_maximal, is_primary, is_radical
    - is_principal
    - height, depth
    - radical

    Methods that likely should be overridden in subclasses:

    - reduce_element
    c                 C   s   t ‚dS )z&Implementation of element containment.N©ÚNotImplementedError©ÚselfÚx© r
   úS/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/polys/agca/ideals.pyÚ_contains_elem*   s    zIdeal._contains_elemc                 C   s   t ‚dS )z$Implementation of ideal containment.Nr   )r   ÚIr
   r
   r   Ú_contains_ideal.   s    zIdeal._contains_idealc                 C   s   t ‚dS )z!Implementation of ideal quotient.Nr   ©r   ÚJr
   r
   r   Ú	_quotient2   s    zIdeal._quotientc                 C   s   t ‚dS )z%Implementation of ideal intersection.Nr   r   r
   r
   r   Ú
_intersect6   s    zIdeal._intersectc                 C   s   t ‚dS )z*Return True if ``self`` is the whole ring.Nr   ©r   r
   r
   r   Úis_whole_ring:   s    zIdeal.is_whole_ringc                 C   s   t ‚dS )z*Return True if ``self`` is the zero ideal.Nr   r   r
   r
   r   Úis_zero>   s    zIdeal.is_zeroc                 C   s   |   |¡o|  | ¡S )z!Implementation of ideal equality.)r   r   r
   r
   r   Ú_equalsB   s    zIdeal._equalsc                 C   s   t ‚dS )z)Return True if ``self`` is a prime ideal.Nr   r   r
   r
   r   Úis_primeF   s    zIdeal.is_primec                 C   s   t ‚dS )z+Return True if ``self`` is a maximal ideal.Nr   r   r
   r
   r   Ú
is_maximalJ   s    zIdeal.is_maximalc                 C   s   t ‚dS )z+Return True if ``self`` is a radical ideal.Nr   r   r
   r
   r   Ú
is_radicalN   s    zIdeal.is_radicalc                 C   s   t ‚dS )z+Return True if ``self`` is a primary ideal.Nr   r   r
   r
   r   Ú
is_primaryR   s    zIdeal.is_primaryc                 C   s   t ‚dS )z-Return True if ``self`` is a principal ideal.Nr   r   r
   r
   r   Úis_principalV   s    zIdeal.is_principalc                 C   s   t ‚dS )z Compute the radical of ``self``.Nr   r   r
   r
   r   ÚradicalZ   s    zIdeal.radicalc                 C   s   t ‚dS )zCompute the depth of ``self``.Nr   r   r
   r
   r   Údepth^   s    zIdeal.depthc                 C   s   t ‚dS )zCompute the height of ``self``.Nr   r   r
   r
   r   Úheightb   s    zIdeal.heightc                 C   s
   || _ d S ©N)Úring)r   r    r
   r
   r   Ú__init__j   s    zIdeal.__init__c                 C   s,   t |tƒr|j| jkr(td| j|f ƒ‚dS )z.Helper to check ``J`` is an ideal of our ring.z J must be an ideal of %s, got %sN)Ú
isinstancer   r    Ú
ValueErrorr   r
   r
   r   Ú_check_idealm   s    ÿzIdeal._check_idealc                 C   s   |   | j |¡¡S )aD  
        Return True if ``elem`` is an element of this ideal.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x).ideal(x+1, x-1).contains(3)
        True
        >>> QQ.old_poly_ring(x).ideal(x**2, x**3).contains(x)
        False
        )r   r    Úconvert)r   Úelemr
   r
   r   Úcontainss   s    zIdeal.containsc                    s*   t |tƒrˆ  |¡S t‡ fdd„|D ƒƒS )aÃ  
        Returns True if ``other`` is is a subset of ``self``.

        Here ``other`` may be an ideal.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> I = QQ.old_poly_ring(x).ideal(x+1)
        >>> I.subset([x**2 - 1, x**2 + 2*x + 1])
        True
        >>> I.subset([x**2 + 1, x + 1])
        False
        >>> I.subset(QQ.old_poly_ring(x).ideal(x**2 - 1))
        True
        c                 3   s   | ]}ˆ   |¡V  qd S r   )r   ©Ú.0r	   r   r
   r   Ú	<genexpr>˜   ó    zIdeal.subset.<locals>.<genexpr>)r"   r   r   Úall)r   Úotherr
   r   r   Úsubsetƒ   s    

zIdeal.subsetc                 K   s   |   |¡ | j|fi |¤ŽS )a~  
        Compute the ideal quotient of ``self`` by ``J``.

        That is, if ``self`` is the ideal `I`, compute the set
        `I : J = \{x \in R | xJ \subset I \}`.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import QQ
        >>> R = QQ.old_poly_ring(x, y)
        >>> R.ideal(x*y).quotient(R.ideal(x))
        <y>
        )r$   r   ©r   r   Úoptsr
   r
   r   Úquotientš   s    
zIdeal.quotientc                 C   s   |   |¡ |  |¡S )a  
        Compute the intersection of self with ideal J.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import QQ
        >>> R = QQ.old_poly_ring(x, y)
        >>> R.ideal(x).intersect(R.ideal(y))
        <x*y>
        )r$   r   r   r
   r
   r   Ú	intersect­   s    
zIdeal.intersectc                 C   s   t ‚dS )zÏ
        Compute the ideal saturation of ``self`` by ``J``.

        That is, if ``self`` is the ideal `I`, compute the set
        `I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}`.
        Nr   r   r
   r
   r   Úsaturate½   s    zIdeal.saturatec                 C   s   |   |¡ |  |¡S )aD  
        Compute the ideal generated by the union of ``self`` and ``J``.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x).ideal(x**2 - 1).union(QQ.old_poly_ring(x).ideal((x+1)**2)) == QQ.old_poly_ring(x).ideal(x+1)
        True
        )r$   Ú_unionr   r
   r
   r   ÚunionÇ   s    
zIdeal.unionc                 C   s   |   |¡ |  |¡S )a‡  
        Compute the ideal product of ``self`` and ``J``.

        That is, compute the ideal generated by products `xy`, for `x` an element
        of ``self`` and `y \in J`.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x, y).ideal(x).product(QQ.old_poly_ring(x, y).ideal(y))
        <x*y>
        )r$   Ú_productr   r
   r
   r   ÚproductÖ   s    
zIdeal.productc                 C   s   |S )zâ
        Reduce the element ``x`` of our ring modulo the ideal ``self``.

        Here "reduce" has no specific meaning: it could return a unique normal
        form, simplify the expression a bit, or just do nothing.
        r
   r   r
   r
   r   Úreduce_elementè   s    zIdeal.reduce_elementc                 C   sZ   t |tƒsF| j | ¡}t ||jƒr&|S t ||jjƒr<||ƒS | |¡S |  |¡ |  |¡S r   )r"   r   r    Úquotient_ringÚdtyper%   r$   r5   )r   ÚeÚRr
   r
   r   Ú__add__ñ   s    


zIdeal.__add__c                 C   sF   t |tƒs2z| j |¡}W n ty0   t Y S 0 |  |¡ |  |¡S r   )r"   r   r    Úidealr   ÚNotImplementedr$   r7   ©r   r;   r
   r
   r   Ú__mul__þ   s    


zIdeal.__mul__c                 C   s   | j  d¡S ©Né   )r    r>   r   r
   r
   r   Ú_zeroth_power	  s    zIdeal._zeroth_powerc                 C   s   | d S rB   r
   r   r
   r
   r   Ú_first_power  s    zIdeal._first_powerc                 C   s$   t |tƒr|j| jkrdS |  |¡S )NF)r"   r   r    r   r@   r
   r
   r   Ú__eq__  s    zIdeal.__eq__c                 C   s
   | |k S r   r
   r@   r
   r
   r   Ú__ne__  s    zIdeal.__ne__N)%Ú__name__Ú
__module__Ú__qualname__Ú__doc__r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r!   r$   r'   r.   r1   r2   r3   r5   r7   r8   r=   Ú__radd__rA   Ú__rmul__rD   rE   rF   rG   r
   r
   r
   r   r      sD   "
		r   c                   @   s|   e Zd ZdZdd„ Zdd„ Zdd„ Zdd	„ Zd
d„ Zdd„ Z	e
dd„ ƒZdd„ Zdd„ Zdd„ Zdd„ Zdd„ Zdd„ ZdS )ÚModuleImplementedIdealzs
    Ideal implementation relying on the modules code.

    Attributes:

    - _module - the underlying module
    c                 C   s   t  | |¡ || _d S r   )r   r!   Ú_module)r   r    Úmoduler
   r
   r   r!   #  s    zModuleImplementedIdeal.__init__c                 C   s   | j  |g¡S r   )rO   r'   r   r
   r
   r   r   '  s    z%ModuleImplementedIdeal._contains_elemc                 C   s   t |tƒst‚| j |j¡S r   )r"   rN   r   rO   Úis_submoduler   r
   r
   r   r   *  s    
z&ModuleImplementedIdeal._contains_idealc                 C   s&   t |tƒst‚|  | j| j |j¡¡S r   )r"   rN   r   Ú	__class__r    rO   r2   r   r
   r
   r   r   /  s    
z!ModuleImplementedIdeal._intersectc                 K   s$   t |tƒst‚| jj|jfi |¤ŽS r   )r"   rN   r   rO   Úmodule_quotientr/   r
   r
   r   r   4  s    
z ModuleImplementedIdeal._quotientc                 C   s&   t |tƒst‚|  | j| j |j¡¡S r   )r"   rN   r   rR   r    rO   r5   r   r
   r
   r   r4   9  s    
zModuleImplementedIdeal._unionc                 C   s   dd„ | j jD ƒS )zú
        Return generators for ``self``.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.abc import x, y
        >>> list(QQ.old_poly_ring(x, y).ideal(x, y, x**2 + y).gens)
        [x, y, x**2 + y]
        c                 s   s   | ]}|d  V  qdS )r   Nr
   r(   r
   r
   r   r*   K  r+   z.ModuleImplementedIdeal.gens.<locals>.<genexpr>©rO   Úgensr   r
   r
   r   rU   >  s    zModuleImplementedIdeal.gensc                 C   s
   | j  ¡ S )a%  
        Return True if ``self`` is the zero ideal.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x).ideal(x).is_zero()
        False
        >>> QQ.old_poly_ring(x).ideal().is_zero()
        True
        )rO   r   r   r
   r
   r   r   M  s    zModuleImplementedIdeal.is_zeroc                 C   s
   | j  ¡ S )a¬  
        Return True if ``self`` is the whole ring, i.e. one generator is a unit.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ, ilex
        >>> QQ.old_poly_ring(x).ideal(x).is_whole_ring()
        False
        >>> QQ.old_poly_ring(x).ideal(3).is_whole_ring()
        True
        >>> QQ.old_poly_ring(x, order=ilex).ideal(2 + x).is_whole_ring()
        True
        )rO   Úis_full_moduler   r
   r
   r   r   ]  s    z$ModuleImplementedIdeal.is_whole_ringc                    s0   ddl m‰  dd ‡ fdd„| jjD ƒ¡ d S )Nr   ©Ússtrú<ú,c                 3   s   | ]\}ˆ |ƒV  qd S r   r
   r(   rW   r
   r   r*   q  r+   z2ModuleImplementedIdeal.__repr__.<locals>.<genexpr>ú>)Úsympy.printing.strrX   ÚjoinrO   rU   r   r
   rW   r   Ú__repr__o  s    zModuleImplementedIdeal.__repr__c                    s6   t ˆ tƒst‚|  | j| jj‡ fdd„| jjD ƒŽ ¡S )Nc                    s(   g | ] \}ˆ j jD ]\}|| g‘qqS r
   rT   )r)   r	   Úy©r   r
   r   Ú
<listcomp>x  r+   z3ModuleImplementedIdeal._product.<locals>.<listcomp>)r"   rN   r   rR   r    rO   Ú	submodulerU   r   r
   r`   r   r6   t  s
    
ÿzModuleImplementedIdeal._productc                 C   s   | j  |g¡S )a  
        Express ``e`` in terms of the generators of ``self``.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> I = QQ.old_poly_ring(x).ideal(x**2 + 1, x)
        >>> I.in_terms_of_generators(1)
        [1, -x]
        )rO   Úin_terms_of_generatorsr@   r
   r
   r   rc   z  s    z-ModuleImplementedIdeal.in_terms_of_generatorsc                 K   s   | j j|gfi |¤Žd S )Nr   )rO   r8   )r   r	   Úoptionsr
   r
   r   r8   ‰  s    z%ModuleImplementedIdeal.reduce_elementN)rH   rI   rJ   rK   r!   r   r   r   r   r4   ÚpropertyrU   r   r   r^   r6   rc   r8   r
   r
   r
   r   rN     s   
rN   N)rK   Úsympy.polys.polyerrorsr   Úsympy.polys.polyutilsr   r   rN   r
   r
   r
   r   Ú<module>   s     