a
    RG5d                    @   s  d Z ddlmZmZ ddlmZ ddlmZ ddlm	Z	m
Z
mZmZ ddlmZ ddlmZ ddlmZmZmZ dd	lmZmZmZmZmZ dd
lmZ ddlmZmZ ddl m!Z!m"Z"m#Z# ddl$m%Z%m&Z& ddl'm(Z( ddl)m*Z*m+Z+ ddl,m-Z-m.Z. ddl/m0Z0m1Z1 ddl2m3Z3 ddl4m5Z6 ddl7m8Z8 ddl9m:Z:m;Z;m<Z< ddl=m>Z> ddl?m@Z@ ddlAmBZC ddlDmEZE ddlFmGZG ddlHmIZImJZJmKZK ddlLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZW ddlXmYZYmZZZm[Z[m\Z\m]Z]m^Z^ ddl_m`Z` ddlambZb dd lcmdZdmeZemfZf dd!lgmhZh dd"limjZjmkZk dd#l4Zldd#lmZmdd$lnmoZo d%d& ZpeeG d'd( d(eZqeeG d)d* d*eqZreed+d, Zsd-d. Zteed/d0 Zud1d2 Zvd3d4 Zweedd5d6Zxeed7d8 Zyeed9d: Zzeed;d< Z{eed=d> Z|eed?d@ Z}eedAdB Z~eedCdD ZeedEdF ZeedGdH ZeedIdJ ZeedKdL ZeedMdN ZeedOdP ZeedQdR ZeedSdT ZeedUdV ZeedWdX ZeedYdZd[d\Zeed]d^ Zeed_d` Zeedadb ZeeddcddZeededf ZeeddgdhZeedidj Zeedkdl Zeedmdn Zeedodp Zeedqdr Zeedsdt Zeedudv Zeedwdx Zeedydz Zeed{d| Zeed}d~ Zeedd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zeedd Zeedd Zeedd ZeedYdddZeedddZeedddZeedddZeedddZeedddZeedd Zeedd ZeeddddZeedd Zeedd ZBeedd ZeeG dd deZeedd Zd#S )z8User-friendly public interface to polynomial functions.     )wrapsreducemul)Optional)SExprAddTuple)Basic)
_sympifyit)Factors	factor_ncfactor_terms)pure_complexevalffastlog_evalf_with_bounded_errorquad_to_mpmath)
Derivative)Mul_keep_coeff)ilcmIInteger)
RelationalEquality)ordered)DummySymbol)sympify_sympify)preorder_traversal	bottom_up)BooleanAtom)polyoptions)construct_domain)FFQQZZ)DomainElement)matrix_fglm)groebner)Monomial)monomial_key)DMPDMFANP)OperationNotSupportedDomainErrorCoercionFailedUnificationFailedGeneratorsNeededPolynomialErrorMultivariatePolynomialErrorExactQuotientFailedPolificationFailedComputationFailedGeneratorsError)basic_from_dict
_sort_gens_unify_gens_dict_reorder_dict_from_expr_parallel_dict_from_expr)together)dup_isolate_real_roots_list)grouppublic
filldedent)sympy_deprecation_warning)iterablesiftN)NoConvergencec                    s   t   fdd}|S )Nc                    s   t |}t|tr | |S t|trz| j|g| jR  }W nR ty   |jrZt Y S t	| 
  j}||}|turtdddd | Y S 0  | |S ntS d S )Na@  
                        Mixing Poly with non-polynomial expressions in binary
                        operations is deprecated. Either explicitly convert
                        the non-Poly operand to a Poly with as_poly() or
                        convert the Poly to an Expr with as_expr().
                        z1.6z)deprecated-poly-nonpoly-binary-operations)deprecated_since_versionactive_deprecations_target)r!   
isinstancePolyr   	from_exprgensr7   	is_MatrixNotImplementedgetattras_expr__name__rH   )fgZexpr_methodresultfunc Q/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/polys/polytools.pywrapperD   s(    




z_polifyit.<locals>.wrapper)r   )r[   r^   r\   rZ   r]   	_polifyitC   s    r_   c                       sB  e Zd ZdZdZdZdZdZdd Ze	dd Z
ed	d
 Zedd Zdd Ze	dd Ze	dd Ze	dd Ze	dd Ze	dd Ze	dd Ze	dd Ze	dd Ze	dd  Z fd!d"Zed#d$ Zed%d& Zed'd( Zed)d* Zed+d, Zed-d. Zed/d0 Zd1d2 Z d3d4 Z!dtd6d7Z"d8d9 Z#d:d; Z$d<d= Z%d>d? Z&d@dA Z'dBdC Z(dudDdEZ)dFdG Z*dHdI Z+dJdK Z,dLdM Z-dNdO Z.dPdQ Z/dRdS Z0dvdTdUZ1dwdVdWZ2dxdXdYZ3dydZd[Z4dzd\d]Z5d^d_ Z6d`da Z7dbdc Z8ddde Z9dfdg Z:d{didjZ;d|dkdlZ<dmdn Z=dodp Z>dqdr Z?dsdt Z@d}dudvZAdwdx ZBdydz ZCd{d| ZDd}d~ ZEdd ZFdd ZGdd ZHdd ZIdd ZJdd ZKdd ZLdd ZMdd ZNdd ZOdd ZPdd ZQdd ZRdd ZSd~ddZTdddZUdddZVdddZWdd ZXdddZYdd ZZdd Z[dd Z\dd Z]dddZ^dd Z_dddZ`dd Zadd ZbdddZcdddZddddZedddZfdddĄZgddƄ ZhddȄ ZidddʄZjdd̄ Zkdd΄ ZlddЄ ZmemZnddd҄ZoddԄ ZpdddքZqddd؄ZrdddڄZsdd܄ Ztddބ ZudddZvdd ZwdddZxdddZydd Zzdd Z{dd Z|dd Z}dddZ~dd Zdd Zdd Zdd Zdd Zdd ZdddZdd  Zdd Zdd Zdd ZdddZdd	d
Zdd Zdd ZdddZdddZdddZdddZdddZdddZdddZdd  Zd!d" Zd#d$ Zdd%d&Zed'd( Zed)d* Zed+d, Zed-d. Zed/d0 Zed1d2 Zed3d4 Zed5d6 Zed7d8 Zed9d: Zed;d< Zed=d> Zed?d@ ZedAdB ZdCdD ZdEdF ZedGdH ZedIdJ ZedKdL ZedMdN ZedOdP ZedQdR ZedSedTdU ZedVdW ZedXdY ZedZd[ Zed\d] Zed^d_ Zed`da Zedbedcdd Zedbededf Zedgedhdi Zedbedjdk Zdldm ZddndoZddpdqZdrds Z  ZS (  rO   aP  
    Generic class for representing and operating on polynomial expressions.

    See :ref:`polys-docs` for general documentation.

    Poly is a subclass of Basic rather than Expr but instances can be
    converted to Expr with the :py:meth:`~.Poly.as_expr` method.

    .. deprecated:: 1.6

       Combining Poly with non-Poly objects in binary operations is
       deprecated. Explicitly convert both objects to either Poly or Expr
       first. See :ref:`deprecated-poly-nonpoly-binary-operations`.

    Examples
    ========

    >>> from sympy import Poly
    >>> from sympy.abc import x, y

    Create a univariate polynomial:

    >>> Poly(x*(x**2 + x - 1)**2)
    Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')

    Create a univariate polynomial with specific domain:

    >>> from sympy import sqrt
    >>> Poly(x**2 + 2*x + sqrt(3), domain='R')
    Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR')

    Create a multivariate polynomial:

    >>> Poly(y*x**2 + x*y + 1)
    Poly(x**2*y + x*y + 1, x, y, domain='ZZ')

    Create a univariate polynomial, where y is a constant:

    >>> Poly(y*x**2 + x*y + 1,x)
    Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]')

    You can evaluate the above polynomial as a function of y:

    >>> Poly(y*x**2 + x*y + 1,x).eval(2)
    6*y + 1

    See Also
    ========

    sympy.core.expr.Expr

    reprQ   Tgn $@c                 O   s   t ||}d|v rtdt|ttttfr:| ||S t	|t
drnt|tr\| ||S | t||S n&t|}|jr| ||S | ||S dS )z:Create a new polynomial instance out of something useful. orderz&'order' keyword is not implemented yet)excludeN)optionsbuild_optionsNotImplementedErrorrN   r/   r0   r1   r*   _from_domain_elementrI   strdict
_from_dict
_from_listlistr    is_Poly
_from_poly
_from_exprclsra   rQ   argsoptr\   r\   r]   __new__   s    
zPoly.__new__c                 G   sT   t |tstd| n"|jt|d kr:td||f t| }||_||_|S )z:Construct :class:`Poly` instance from raw representation. z%invalid polynomial representation: %s   zinvalid arguments: %s, %s)	rN   r/   r7   levlenr   rt   ra   rQ   )rq   ra   rQ   objr\   r\   r]   new   s    

zPoly.newc                 C   s   t | j g| jR  S N)r=   ra   to_sympy_dictrQ   selfr\   r\   r]   expr   s    z	Poly.exprc                 C   s   | j f| j S rz   )r~   rQ   r|   r\   r\   r]   rr      s    z	Poly.argsc                 C   s   | j f| j S rz   r`   r|   r\   r\   r]   _hashable_content   s    zPoly._hashable_contentc                 O   s   t ||}| ||S )(Construct a polynomial from a ``dict``. )rd   re   rj   rp   r\   r\   r]   	from_dict   s    zPoly.from_dictc                 O   s   t ||}| ||S )(Construct a polynomial from a ``list``. )rd   re   rk   rp   r\   r\   r]   	from_list   s    zPoly.from_listc                 O   s   t ||}| ||S )*Construct a polynomial from a polynomial. )rd   re   rn   rp   r\   r\   r]   	from_poly   s    zPoly.from_polyc                 O   s   t ||}| ||S +Construct a polynomial from an expression. )rd   re   ro   rp   r\   r\   r]   rP      s    zPoly.from_exprc                 C   sz   |j }|stdt|d }|j}|du r>t||d\}}n | D ]\}}||||< qF| jt	|||g|R  S )r   z0Cannot initialize from 'dict' without generatorsru   Nrs   )
rQ   r6   rw   domainr&   itemsconvertry   r/   r   )rq   ra   rs   rQ   levelr   monomcoeffr\   r\   r]   rj      s    zPoly._from_dictc                 C   s   |j }|stdnt|dkr(tdt|d }|j}|du rTt||d\}}ntt|j|}| j	t
|||g|R  S )r   z0Cannot initialize from 'list' without generatorsru   z#'list' representation not supportedNr   )rQ   r6   rw   r8   r   r&   rl   mapr   ry   r/   r   )rq   ra   rs   rQ   r   r   r\   r\   r]   rk     s    zPoly._from_listc                 C   s   | |j kr | j|jg|jR  }|j}|j}|j}|rl|j|krlt|jt|krb| | |S |j	| }d|v r|r|
|}n|du r| }|S )r   r   T)	__class__ry   ra   rQ   fieldr   setro   rU   reorder
set_domainto_field)rq   ra   rs   rQ   r   r   r\   r\   r]   rn     s    

zPoly._from_polyc                 C   s   t ||\}}| ||S r   )rA   rj   )rq   ra   rs   r\   r\   r]   ro   4  s    zPoly._from_exprc                 C   s@   |j }|j}t|d }||g}| jt|||g|R  S Nru   )rQ   r   rw   r   ry   r/   r   )rq   ra   rs   rQ   r   r   r\   r\   r]   rg   :  s
    zPoly._from_domain_elementc                    s
   t   S rz   super__hash__r|   r   r\   r]   r   D  s    zPoly.__hash__c                 C   sP   t  }| j}tt|D ],}|  D ]}|| r$||| jO } qq$q|| jB S )a  
        Free symbols of a polynomial expression.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(x**2 + 1).free_symbols
        {x}
        >>> Poly(x**2 + y).free_symbols
        {x, y}
        >>> Poly(x**2 + y, x).free_symbols
        {x, y}
        >>> Poly(x**2 + y, x, z).free_symbols
        {x, y}

        )r   rQ   rangerw   monomsfree_symbolsfree_symbols_in_domain)r}   symbolsrQ   ir   r\   r\   r]   r   G  s    zPoly.free_symbolsc                 C   sP   | j jt  }}|jr.|jD ]}||jO }qn|jrL|  D ]}||jO }q<|S )aj  
        Free symbols of the domain of ``self``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 1).free_symbols_in_domain
        set()
        >>> Poly(x**2 + y).free_symbols_in_domain
        set()
        >>> Poly(x**2 + y, x).free_symbols_in_domain
        {y}

        )ra   domr   is_Compositer   r   is_EXcoeffs)r}   r   r   genr   r\   r\   r]   r   f  s    
zPoly.free_symbols_in_domainc                 C   s
   | j d S )z
        Return the principal generator.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).gen
        x

        r   rQ   r|   r\   r\   r]   r     s    zPoly.genc                 C   s   |   S )a  Get the ground domain of a :py:class:`~.Poly`

        Returns
        =======

        :py:class:`~.Domain`:
            Ground domain of the :py:class:`~.Poly`.

        Examples
        ========

        >>> from sympy import Poly, Symbol
        >>> x = Symbol('x')
        >>> p = Poly(x**2 + x)
        >>> p
        Poly(x**2 + x, x, domain='ZZ')
        >>> p.domain
        ZZ
        )
get_domainr|   r\   r\   r]   r     s    zPoly.domainc                 C   s&   | j | j| jj| jjg| jR  S )z3Return zero polynomial with ``self``'s properties. )ry   ra   zerorv   r   rQ   r|   r\   r\   r]   r     s    z	Poly.zeroc                 C   s&   | j | j| jj| jjg| jR  S )z2Return one polynomial with ``self``'s properties. )ry   ra   onerv   r   rQ   r|   r\   r\   r]   r     s    zPoly.onec                 C   s&   | j | j| jj| jjg| jR  S )z3Return unit polynomial with ``self``'s properties. )ry   ra   unitrv   r   rQ   r|   r\   r\   r]   r     s    z	Poly.unitc                 C   s"   |  |\}}}}||||fS )a  
        Make ``f`` and ``g`` belong to the same domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f, g = Poly(x/2 + 1), Poly(2*x + 1)

        >>> f
        Poly(1/2*x + 1, x, domain='QQ')
        >>> g
        Poly(2*x + 1, x, domain='ZZ')

        >>> F, G = f.unify(g)

        >>> F
        Poly(1/2*x + 1, x, domain='QQ')
        >>> G
        Poly(2*x + 1, x, domain='QQ')

        )_unify)rW   rX   _perFGr\   r\   r]   unify  s    z
Poly.unifyc                    s  t jsZz(jjjjjjjfW S  tyX   tdf Y n0 tjt	rtjt	rt
jj}jjjj|t|d  }j|krtj j|\}}jjkrfdd|D }t	ttt|||}nj}j|krttj j|\}}jjkrXfdd|D }t	ttt|||}	nj}	ntdf j |d f fdd	}
|
||	fS )NCannot unify %s with %sru   c                    s   g | ]}  |jjqS r\   r   ra   r   .0c)r   rW   r\   r]   
<listcomp>      zPoly._unify.<locals>.<listcomp>c                    s   g | ]}  |jjqS r\   r   r   )r   rX   r\   r]   r     r   c                    sD   |d ur2|d | ||d d   }|s2| | S  j| g|R  S r   to_sympyry   ra   r   rQ   removerq   r\   r]   r     s
    
zPoly._unify.<locals>.per)r    rm   ra   r   r   
from_sympyr4   r5   rN   r/   r?   rQ   r   rw   r@   to_dictri   rl   zipr   r   )rW   rX   rQ   rv   Zf_monomsZf_coeffsr   Zg_monomsZg_coeffsr   r   r\   )rq   r   rW   rX   r]   r     s:    ("	zPoly._unifyNc                 C   sX   |du r| j }|durD|d| ||d d  }|sD| jj|S | jj|g|R  S )ab  
        Create a Poly out of the given representation.

        Examples
        ========

        >>> from sympy import Poly, ZZ
        >>> from sympy.abc import x, y

        >>> from sympy.polys.polyclasses import DMP

        >>> a = Poly(x**2 + 1)

        >>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y])
        Poly(y + 1, y, domain='ZZ')

        Nru   )rQ   ra   r   r   r   ry   )rW   ra   rQ   r   r\   r\   r]   r   
  s    zPoly.perc                 C   s&   t | jd|i}| | j|jS )z Set the ground domain of ``f``. r   )rd   re   rQ   r   ra   r   r   )rW   r   rs   r\   r\   r]   r   '  s    zPoly.set_domainc                 C   s   | j jS )z Get the ground domain of ``f``. )ra   r   rW   r\   r\   r]   r   ,  s    zPoly.get_domainc                 C   s   t j|}| t|S )z
        Set the modulus of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2)
        Poly(x**2 + 1, x, modulus=2)

        )rd   ZModulus
preprocessr   r'   )rW   modulusr\   r\   r]   set_modulus0  s    zPoly.set_modulusc                 C   s&   |   }|jrt| S tddS )z
        Get the modulus of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, modulus=2).get_modulus()
        2

        z$not a polynomial over a Galois fieldN)r   Zis_FiniteFieldr   Zcharacteristicr7   )rW   r   r\   r\   r]   get_modulusA  s    zPoly.get_modulusc                 C   sN   || j v r>|jr| ||S z| ||W S  ty<   Y n0 |  ||S )z)Internal implementation of :func:`subs`. )rQ   	is_numberevalreplacer7   rU   subs)rW   oldry   r\   r\   r]   
_eval_subsV  s    
zPoly._eval_subsc                    s4   | j  \ } fddt| jD }| j||dS )a  
        Remove unnecessary generators from ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import a, b, c, d, x

        >>> Poly(a + x, a, b, c, d, x).exclude()
        Poly(a + x, a, x, domain='ZZ')

        c                    s   g | ]\}}| vr|qS r\   r\   )r   jr   Jr\   r]   r   r  r   z Poly.exclude.<locals>.<listcomp>r   )ra   rc   	enumeraterQ   r   )rW   ry   rQ   r\   r   r]   rc   c  s    zPoly.excludec                 K   s   |du r$| j r| j| }}ntd||ks6|| jvr:| S || jv r|| jvr|  }|jrf||jvrt| j}||||< | j	| j
|dS td||| f dS )a  
        Replace ``x`` with ``y`` in generators list.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 1, x).replace(x, y)
        Poly(y**2 + 1, y, domain='ZZ')

        Nz(syntax supported only in univariate caser   zCannot replace %s with %s in %s)is_univariater   r7   rQ   r   r   r   rl   indexr   ra   )rW   xy_ignorer   rQ   r\   r\   r]   r   v  s    
zPoly.replacec                 O   s   |   j|i |S )z-Match expression from Poly. See Basic.match())rU   match)rW   rr   kwargsr\   r\   r]   r     s    z
Poly.matchc                 O   s|   t d|}|s t| j|d}nt| jt|kr:tdtttt	| j
 | j| }| jt|| j
jt|d |dS )a  
        Efficiently apply new order of generators.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x*y**2, x, y).reorder(y, x)
        Poly(y**2*x + x**2, y, x, domain='ZZ')

        r\   r   z7generators list can differ only up to order of elementsru   r   )rd   Optionsr>   rQ   r   r7   ri   rl   r   r@   ra   r   r   r/   r   rw   )rW   rQ   rr   rs   ra   r\   r\   r]   r     s     zPoly.reorderc                 C   s   | j dd}| |}i }| D ]4\}}t|d| rFtd|  ||||d < q"| j|d }| jt|t	|d | j
jg|R  S )a(  
        Remove dummy generators from ``f`` that are to the left of
        specified ``gen`` in the generators as ordered. When ``gen``
        is an integer, it refers to the generator located at that
        position within the tuple of generators of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(y**2 + y*z**2, x, y, z).ltrim(y)
        Poly(y**2 + y*z**2, y, z, domain='ZZ')
        >>> Poly(z, x, y, z).ltrim(-1)
        Poly(z, z, domain='ZZ')

        T)nativeNzCannot left trim %sru   )as_dict_gen_to_levelr   anyr7   rQ   ry   r/   r   rw   ra   r   )rW   r   ra   r   termsr   r   rQ   r\   r\   r]   ltrim  s    
z
Poly.ltrimc              	   G   s   t  }|D ]B}z| j|}W n" ty@   td| |f Y q
0 || q
|  D ]*}t|D ]\}}||vrb|rb  dS qbqVdS )aJ  
        Return ``True`` if ``Poly(f, *gens)`` retains ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(x*y + 1, x, y, z).has_only_gens(x, y)
        True
        >>> Poly(x*y + z, x, y, z).has_only_gens(x, y)
        False

        %s doesn't have %s as generatorFT)r   rQ   r   
ValueErrorr<   addr   r   )rW   rQ   indicesr   r   r   r   eltr\   r\   r]   has_only_gens  s    

zPoly.has_only_gensc                 C   s,   t | jdr| j }n
t| d| |S )z
        Make the ground domain a ring.

        Examples
        ========

        >>> from sympy import Poly, QQ
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, domain=QQ).to_ring()
        Poly(x**2 + 1, x, domain='ZZ')

        to_ring)hasattrra   r   r2   r   rW   rY   r\   r\   r]   r     s    
zPoly.to_ringc                 C   s,   t | jdr| j }n
t| d| |S )z
        Make the ground domain a field.

        Examples
        ========

        >>> from sympy import Poly, ZZ
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x, domain=ZZ).to_field()
        Poly(x**2 + 1, x, domain='QQ')

        r   )r   ra   r   r2   r   r   r\   r\   r]   r     s    
zPoly.to_fieldc                 C   s,   t | jdr| j }n
t| d| |S )z
        Make the ground domain exact.

        Examples
        ========

        >>> from sympy import Poly, RR
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1.0, x, domain=RR).to_exact()
        Poly(x**2 + 1, x, domain='QQ')

        to_exact)r   ra   r   r2   r   r   r\   r\   r]   r   '  s    
zPoly.to_exactc                 C   s4   t | jdd|| jjpdd\}}| j|| j|dS )a  
        Recalculate the ground domain of a polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(x**2 + 1, x, domain='QQ[y]')
        >>> f
        Poly(x**2 + 1, x, domain='QQ[y]')

        >>> f.retract()
        Poly(x**2 + 1, x, domain='ZZ')
        >>> f.retract(field=True)
        Poly(x**2 + 1, x, domain='QQ')

        Tr   N)r   	compositer   )r&   r   r   r   r   rQ   )rW   r   r   ra   r\   r\   r]   retract<  s    
zPoly.retractc                 C   sh   |du rd||  }}}n
|  |}t|t| }}t| jdrT| j|||}n
t| d| |S )z1Take a continuous subsequence of terms of ``f``. Nr   slice)r   intr   ra   r   r2   r   )rW   r   mnr   rY   r\   r\   r]   r   T  s    

z
Poly.slicec                    s    fdd j j|dD S )aQ  
        Returns all non-zero coefficients from ``f`` in lex order.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x + 3, x).coeffs()
        [1, 2, 3]

        See Also
        ========
        all_coeffs
        coeff_monomial
        nth

        c                    s   g | ]} j j|qS r\   ra   r   r   r   r   r\   r]   r   x  r   zPoly.coeffs.<locals>.<listcomp>rb   )ra   r   rW   rb   r\   r   r]   r   d  s    zPoly.coeffsc                 C   s   | j j|dS )aU  
        Returns all non-zero monomials from ``f`` in lex order.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms()
        [(2, 0), (1, 2), (1, 1), (0, 1)]

        See Also
        ========
        all_monoms

        r   )ra   r   r   r\   r\   r]   r   z  s    zPoly.monomsc                    s    fdd j j|dD S )ac  
        Returns all non-zero terms from ``f`` in lex order.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms()
        [((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]

        See Also
        ========
        all_terms

        c                    s"   g | ]\}}| j j|fqS r\   r   r   r   r   r   r\   r]   r     r   zPoly.terms.<locals>.<listcomp>r   )ra   r   r   r\   r   r]   r     s    z
Poly.termsc                    s    fdd j  D S )a  
        Returns all coefficients from a univariate polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x - 1, x).all_coeffs()
        [1, 0, 2, -1]

        c                    s   g | ]} j j|qS r\   r   r   r   r\   r]   r     r   z#Poly.all_coeffs.<locals>.<listcomp>)ra   
all_coeffsr   r\   r   r]   r     s    zPoly.all_coeffsc                 C   s
   | j  S )a?  
        Returns all monomials from a univariate polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x - 1, x).all_monoms()
        [(3,), (2,), (1,), (0,)]

        See Also
        ========
        all_terms

        )ra   
all_monomsr   r\   r\   r]   r     s    zPoly.all_monomsc                    s    fdd j  D S )a  
        Returns all terms from a univariate polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x - 1, x).all_terms()
        [((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)]

        c                    s"   g | ]\}}| j j|fqS r\   r   r   r   r\   r]   r     r   z"Poly.all_terms.<locals>.<listcomp>)ra   	all_termsr   r\   r   r]   r     s    zPoly.all_termsc                 O   sx   i }|   D ]L\}}|||}t|tr2|\}}n|}|r||vrL|||< qtd| q| j|g|pj| jR i |S )ah  
        Apply a function to all terms of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> def func(k, coeff):
        ...     k = k[0]
        ...     return coeff//10**(2-k)

        >>> Poly(x**2 + 20*x + 400).termwise(func)
        Poly(x**2 + 2*x + 4, x, domain='ZZ')

        z%s monomial was generated twice)r   rN   tupler7   r   rQ   )rW   r[   rQ   rr   r   r   r   rY   r\   r\   r]   termwise  s    



zPoly.termwisec                 C   s   t |  S )z
        Returns the number of non-zero terms in ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 2*x - 1).length()
        3

        )rw   r   r   r\   r\   r]   length  s    zPoly.lengthFc                 C   s$   |r| j j|dS | j j|dS dS )a  
        Switch to a ``dict`` representation.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict()
        {(0, 1): -1, (1, 2): 2, (2, 0): 1}

        r   N)ra   r   r{   )rW   r   r   r\   r\   r]   r     s    zPoly.as_dictc                 C   s   |r| j  S | j  S dS )z%Switch to a ``list`` representation. N)ra   to_listZto_sympy_list)rW   r   r\   r\   r]   as_list  s    
zPoly.as_listc              	   G   s   |s
| j S t|dkrt|d tr|d }t| j}| D ]B\}}z||}W n" tyv   t	d| |f Y q>0 |||< q>t
| j g|R  S )ar  
        Convert a Poly instance to an Expr instance.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2 + 2*x*y**2 - y, x, y)

        >>> f.as_expr()
        x**2 + 2*x*y**2 - y
        >>> f.as_expr({x: 5})
        10*y**2 - y + 25
        >>> f.as_expr(5, 6)
        379

        ru   r   r   )r~   rw   rN   ri   rl   rQ   r   r   r   r<   r=   ra   r{   )rW   rQ   mappingr   valuer   r\   r\   r]   rU   %  s    



zPoly.as_exprc                 O   sF   z,t | g|R i |}|js$W dS |W S W n ty@   Y dS 0 dS )a{  Converts ``self`` to a polynomial or returns ``None``.

        >>> from sympy import sin
        >>> from sympy.abc import x, y

        >>> print((x**2 + x*y).as_poly())
        Poly(x**2 + x*y, x, y, domain='ZZ')

        >>> print((x**2 + x*y).as_poly(x, y))
        Poly(x**2 + x*y, x, y, domain='ZZ')

        >>> print((x**2 + sin(y)).as_poly(x, y))
        None

        N)rO   rm   r7   )r}   rQ   rr   polyr\   r\   r]   as_polyK  s    
zPoly.as_polyc                 C   s,   t | jdr| j }n
t| d| |S )a  
        Convert algebraic coefficients to rationals.

        Examples
        ========

        >>> from sympy import Poly, I
        >>> from sympy.abc import x

        >>> Poly(x**2 + I*x + 1, x, extension=I).lift()
        Poly(x**4 + 3*x**2 + 1, x, domain='QQ')

        lift)r   ra   r   r2   r   r   r\   r\   r]   r   e  s    
z	Poly.liftc                 C   s4   t | jdr| j \}}n
t| d|| |fS )a+  
        Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate()
        ((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))

        deflate)r   ra   r   r2   r   rW   r   rY   r\   r\   r]   r   z  s    
zPoly.deflatec                 C   sz   | j j}|jr| S |js$td| t| j dr@| j j|d}n
t| d|r\|j| j	 }n| j	|j }| j
|g|R  S )a  
        Inject ground domain generators into ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x)

        >>> f.inject()
        Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ')
        >>> f.inject(front=True)
        Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')

        z Cannot inject generators over %sinjectfront)ra   r   is_Numericalrm   r3   r   r  r2   r   rQ   ry   )rW   r  r   rY   rQ   r\   r\   r]   r    s    
zPoly.injectc                 G   s   | j j}|jstd| t|}| jd| |krJ| j|d d }}n4| j| d |krv| jd|  d }}ntd|j| }t| j dr| j j	||d}n
t
| d| j|g|R  S )a  
        Eject selected generators into the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)

        >>> f.eject(x)
        Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
        >>> f.eject(y)
        Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')

        zCannot eject generators over %sNTFz'can only eject front or back generatorsejectr  )ra   r   r  r3   rw   rQ   rf   r  r   r  r2   ry   )rW   rQ   r   kZ_gensr  rY   r\   r\   r]   r    s     

z
Poly.ejectc                 C   s4   t | jdr| j \}}n
t| d|| |fS )a  
        Remove GCD of terms from the polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd()
        ((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))

        	terms_gcd)r   ra   r  r2   r   r  r\   r\   r]   r    s    
zPoly.terms_gcdc                 C   s.   t | jdr| j|}n
t| d| |S )z
        Add an element of the ground domain to ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 1).add_ground(2)
        Poly(x + 3, x, domain='ZZ')

        
add_ground)r   ra   r	  r2   r   rW   r   rY   r\   r\   r]   r	    s    
zPoly.add_groundc                 C   s.   t | jdr| j|}n
t| d| |S )z
        Subtract an element of the ground domain from ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 1).sub_ground(2)
        Poly(x - 1, x, domain='ZZ')

        
sub_ground)r   ra   r  r2   r   r
  r\   r\   r]   r    s    
zPoly.sub_groundc                 C   s.   t | jdr| j|}n
t| d| |S )z
        Multiply ``f`` by a an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 1).mul_ground(2)
        Poly(2*x + 2, x, domain='ZZ')

        
mul_ground)r   ra   r  r2   r   r
  r\   r\   r]   r    s    
zPoly.mul_groundc                 C   s.   t | jdr| j|}n
t| d| |S )aO  
        Quotient of ``f`` by a an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x + 4).quo_ground(2)
        Poly(x + 2, x, domain='ZZ')

        >>> Poly(2*x + 3).quo_ground(2)
        Poly(x + 1, x, domain='ZZ')

        
quo_ground)r   ra   r  r2   r   r
  r\   r\   r]   r  2  s    
zPoly.quo_groundc                 C   s.   t | jdr| j|}n
t| d| |S )a  
        Exact quotient of ``f`` by a an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x + 4).exquo_ground(2)
        Poly(x + 2, x, domain='ZZ')

        >>> Poly(2*x + 3).exquo_ground(2)
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2 does not divide 3 in ZZ

        exquo_ground)r   ra   r  r2   r   r
  r\   r\   r]   r  J  s    
zPoly.exquo_groundc                 C   s,   t | jdr| j }n
t| d| |S )z
        Make all coefficients in ``f`` positive.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).abs()
        Poly(x**2 + 1, x, domain='ZZ')

        abs)r   ra   r  r2   r   r   r\   r\   r]   r  d  s    
zPoly.absc                 C   s,   t | jdr| j }n
t| d| |S )a4  
        Negate all coefficients in ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).neg()
        Poly(-x**2 + 1, x, domain='ZZ')

        >>> -Poly(x**2 - 1, x)
        Poly(-x**2 + 1, x, domain='ZZ')

        neg)r   ra   r  r2   r   r   r\   r\   r]   r  y  s    
zPoly.negc                 C   sT   t |}|js| |S | |\}}}}t| jdrB||}n
t| d||S )a[  
        Add two polynomials ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).add(Poly(x - 2, x))
        Poly(x**2 + x - 1, x, domain='ZZ')

        >>> Poly(x**2 + 1, x) + Poly(x - 2, x)
        Poly(x**2 + x - 1, x, domain='ZZ')

        r   )r    rm   r	  r   r   ra   r   r2   rW   rX   r   r   r   r   rY   r\   r\   r]   r     s    

zPoly.addc                 C   sT   t |}|js| |S | |\}}}}t| jdrB||}n
t| d||S )a`  
        Subtract two polynomials ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).sub(Poly(x - 2, x))
        Poly(x**2 - x + 3, x, domain='ZZ')

        >>> Poly(x**2 + 1, x) - Poly(x - 2, x)
        Poly(x**2 - x + 3, x, domain='ZZ')

        sub)r    rm   r  r   r   ra   r  r2   r  r\   r\   r]   r    s    

zPoly.subc                 C   sT   t |}|js| |S | |\}}}}t| jdrB||}n
t| d||S )ap  
        Multiply two polynomials ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).mul(Poly(x - 2, x))
        Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')

        >>> Poly(x**2 + 1, x)*Poly(x - 2, x)
        Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')

        r   )r    rm   r  r   r   ra   r   r2   r  r\   r\   r]   r     s    

zPoly.mulc                 C   s,   t | jdr| j }n
t| d| |S )a3  
        Square a polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x - 2, x).sqr()
        Poly(x**2 - 4*x + 4, x, domain='ZZ')

        >>> Poly(x - 2, x)**2
        Poly(x**2 - 4*x + 4, x, domain='ZZ')

        sqr)r   ra   r  r2   r   r   r\   r\   r]   r    s    
zPoly.sqrc                 C   s6   t |}t| jdr"| j|}n
t| d| |S )aX  
        Raise ``f`` to a non-negative power ``n``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x - 2, x).pow(3)
        Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')

        >>> Poly(x - 2, x)**3
        Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')

        pow)r   r   ra   r  r2   r   rW   r   rY   r\   r\   r]   r    s
    
zPoly.powc                 C   sH   |  |\}}}}t| jdr.||\}}n
t| d||||fS )a#  
        Polynomial pseudo-division of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x))
        (Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ'))

        pdiv)r   r   ra   r  r2   )rW   rX   r   r   r   r   qrr\   r\   r]   r     s
    
z	Poly.pdivc                 C   s<   |  |\}}}}t| jdr*||}n
t| d||S )aN  
        Polynomial pseudo-remainder of ``f`` by ``g``.

        Caveat: The function prem(f, g, x) can be safely used to compute
          in Z[x] _only_ subresultant polynomial remainder sequences (prs's).

          To safely compute Euclidean and Sturmian prs's in Z[x]
          employ anyone of the corresponding functions found in
          the module sympy.polys.subresultants_qq_zz. The functions
          in the module with suffix _pg compute prs's in Z[x] employing
          rem(f, g, x), whereas the functions with suffix _amv
          compute prs's in Z[x] employing rem_z(f, g, x).

          The function rem_z(f, g, x) differs from prem(f, g, x) in that
          to compute the remainder polynomials in Z[x] it premultiplies
          the divident times the absolute value of the leading coefficient
          of the divisor raised to the power degree(f, x) - degree(g, x) + 1.


        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x))
        Poly(20, x, domain='ZZ')

        prem)r   r   ra   r  r2   r  r\   r\   r]   r  7  s
    
z	Poly.premc                 C   s<   |  |\}}}}t| jdr*||}n
t| d||S )a  
        Polynomial pseudo-quotient of ``f`` by ``g``.

        See the Caveat note in the function prem(f, g).

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x))
        Poly(2*x + 4, x, domain='ZZ')

        >>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x))
        Poly(2*x + 2, x, domain='ZZ')

        pquo)r   r   ra   r  r2   r  r\   r\   r]   r  ^  s
    
z	Poly.pquoc              
   C   sz   |  |\}}}}t| jdrhz||}W qr tyd } z ||  | W Y d}~qrd}~0 0 n
t| d||S )a  
        Polynomial exact pseudo-quotient of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x))
        Poly(2*x + 2, x, domain='ZZ')

        >>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x))
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

        pexquoN)r   r   ra   r  r9   ry   rU   r2   )rW   rX   r   r   r   r   rY   excr\   r\   r]   r  z  s    ,
zPoly.pexquoc                 C   s   |  |\}}}}d}|r<|jr<|js<| |  }}d}t| jdrX||\}}	n
t| d|rz| |	  }
}W n t	y   Y n0 |
| }}	||||	fS )a  
        Polynomial division with remainder of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x))
        (Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))

        >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False)
        (Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ'))

        FTdiv)
r   is_Ringis_Fieldr   r   ra   r  r2   r   r4   )rW   rX   autor   r   r   r   r   r  r  QRr\   r\   r]   r    s    

zPoly.divc           	      C   s   |  |\}}}}d}|r<|jr<|js<| |  }}d}t| jdrT||}n
t| d|rz| }W n t	y   Y n0 ||S )ao  
        Computes the polynomial remainder of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x))
        Poly(5, x, domain='ZZ')

        >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False)
        Poly(x**2 + 1, x, domain='ZZ')

        FTrem)
r   r  r  r   r   ra   r#  r2   r   r4   )	rW   rX   r   r   r   r   r   r   r  r\   r\   r]   r#    s    
zPoly.remc           	      C   s   |  |\}}}}d}|r<|jr<|js<| |  }}d}t| jdrT||}n
t| d|rz| }W n t	y   Y n0 ||S )aa  
        Computes polynomial quotient of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x))
        Poly(1/2*x + 1, x, domain='QQ')

        >>> Poly(x**2 - 1, x).quo(Poly(x - 1, x))
        Poly(x + 1, x, domain='ZZ')

        FTquo)
r   r  r  r   r   ra   r$  r2   r   r4   )	rW   rX   r   r   r   r   r   r   r  r\   r\   r]   r$    s    
zPoly.quoc           
   
   C   s   |  |\}}}}d}|r<|jr<|js<| |  }}d}t| jdrz||}W q ty }	 z |	| 	 |	 W Y d}	~	qd}	~	0 0 n
t
| d|rz| }W n ty   Y n0 ||S )a  
        Computes polynomial exact quotient of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x))
        Poly(x + 1, x, domain='ZZ')

        >>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x))
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

        FTexquoN)r   r  r  r   r   ra   r%  r9   ry   rU   r2   r   r4   )
rW   rX   r   r   r   r   r   r   r  r  r\   r\   r]   r%  
  s"    ,
z
Poly.exquoc                 C   s   t |trXt| j}| |  kr*|k rDn n|dk r>|| S |S qtd|||f n2z| jt|W S  ty   td| Y n0 dS )z3Returns level associated with the given generator. r   z -%s <= gen < %s expected, got %sz"a valid generator expected, got %sN)rN   r   rw   rQ   r7   r   r    r   )rW   r   r   r\   r\   r]   r   4  s    

zPoly._gen_to_levelr   c                 C   s0   |  |}t| jdr"| j|S t| ddS )au  
        Returns degree of ``f`` in ``x_j``.

        The degree of 0 is negative infinity.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + y*x + 1, x, y).degree()
        2
        >>> Poly(x**2 + y*x + y, x, y).degree(y)
        1
        >>> Poly(0, x).degree()
        -oo

        degreeN)r   r   ra   r&  r2   )rW   r   r   r\   r\   r]   r&  H  s    
zPoly.degreec                 C   s$   t | jdr| j S t| ddS )z
        Returns a list of degrees of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + y*x + 1, x, y).degree_list()
        (2, 1)

        degree_listN)r   ra   r'  r2   r   r\   r\   r]   r'  c  s    
zPoly.degree_listc                 C   s$   t | jdr| j S t| ddS )a  
        Returns the total degree of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + y*x + 1, x, y).total_degree()
        2
        >>> Poly(x + y**5, x, y).total_degree()
        5

        total_degreeN)r   ra   r(  r2   r   r\   r\   r]   r(  v  s    
zPoly.total_degreec                 C   s~   t |tstdt| || jv r8| j|}| j}nt| j}| j|f }t| jdrp| j	| j
||dS t| ddS )a  
        Returns the homogeneous polynomial of ``f``.

        A homogeneous polynomial is a polynomial whose all monomials with
        non-zero coefficients have the same total degree. If you only
        want to check if a polynomial is homogeneous, then use
        :func:`Poly.is_homogeneous`. If you want not only to check if a
        polynomial is homogeneous but also compute its homogeneous order,
        then use :func:`Poly.homogeneous_order`.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3)
        >>> f.homogenize(z)
        Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ')

        z``Symbol`` expected, got %s
homogenizer   homogeneous_orderN)rN   r   	TypeErrortyperQ   r   rw   r   ra   r   r)  r2   )rW   sr   rQ   r\   r\   r]   r)    s    


zPoly.homogenizec                 C   s$   t | jdr| j S t| ddS )a-  
        Returns the homogeneous order of ``f``.

        A homogeneous polynomial is a polynomial whose all monomials with
        non-zero coefficients have the same total degree. This degree is
        the homogeneous order of ``f``. If you only want to check if a
        polynomial is homogeneous, then use :func:`Poly.is_homogeneous`.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4)
        >>> f.homogeneous_order()
        5

        r*  N)r   ra   r*  r2   r   r\   r\   r]   r*    s    
zPoly.homogeneous_orderc                 C   sF   |dur|  |d S t| jdr.| j }n
t| d| jj|S )z
        Returns the leading coefficient of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC()
        4

        Nr   LC)r   r   ra   r.  r2   r   r   )rW   rb   rY   r\   r\   r]   r.    s    
zPoly.LCc                 C   s0   t | jdr| j }n
t| d| jj|S )z
        Returns the trailing coefficient of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x**2 + 3*x, x).TC()
        0

        TC)r   ra   r/  r2   r   r   r   r\   r\   r]   r/    s    
zPoly.TCc                 C   s(   t | jdr| |d S t| ddS )z
        Returns the last non-zero coefficient of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x**2 + 3*x, x).EC()
        3

        r   ECN)r   ra   r   r2   r   r\   r\   r]   r1    s    zPoly.ECc                 C   s   | j t|| jj S )aE  
        Returns the coefficient of ``monom`` in ``f`` if there, else None.

        Examples
        ========

        >>> from sympy import Poly, exp
        >>> from sympy.abc import x, y

        >>> p = Poly(24*x*y*exp(8) + 23*x, x, y)

        >>> p.coeff_monomial(x)
        23
        >>> p.coeff_monomial(y)
        0
        >>> p.coeff_monomial(x*y)
        24*exp(8)

        Note that ``Expr.coeff()`` behaves differently, collecting terms
        if possible; the Poly must be converted to an Expr to use that
        method, however:

        >>> p.as_expr().coeff(x)
        24*y*exp(8) + 23
        >>> p.as_expr().coeff(y)
        24*x*exp(8)
        >>> p.as_expr().coeff(x*y)
        24*exp(8)

        See Also
        ========
        nth: more efficient query using exponents of the monomial's generators

        )nthr-   rQ   	exponents)rW   r   r\   r\   r]   coeff_monomial  s    #zPoly.coeff_monomialc                 G   sV   t | jdr>t|t| jkr&td| jjttt| }n
t	| d| jj
|S )a.  
        Returns the ``n``-th coefficient of ``f`` where ``N`` are the
        exponents of the generators in the term of interest.

        Examples
        ========

        >>> from sympy import Poly, sqrt
        >>> from sympy.abc import x, y

        >>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2)
        2
        >>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2)
        2
        >>> Poly(4*sqrt(x)*y)
        Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ')
        >>> _.nth(1, 1)
        4

        See Also
        ========
        coeff_monomial

        r2  z,exponent of each generator must be specified)r   ra   rw   rQ   r   r2  rl   r   r   r2   r   r   )rW   NrY   r\   r\   r]   r2  +  s    
zPoly.nthru   c                 C   s   t dd S )NzyEither convert to Expr with `as_expr` method to use Expr's coeff method or else use the `coeff_monomial` method of Polys.rf   )rW   r   r   rightr\   r\   r]   r   M  s    z
Poly.coeffc                 C   s   t | |d | jS )a  
        Returns the leading monomial of ``f``.

        The Leading monomial signifies the monomial having
        the highest power of the principal generator in the
        expression f.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM()
        x**2*y**0

        r   r-   r   rQ   r   r\   r\   r]   LMY  s    zPoly.LMc                 C   s   t | |d | jS )z
        Returns the last non-zero monomial of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM()
        x**0*y**1

        r0  r8  r   r\   r\   r]   EMm  s    zPoly.EMc                 C   s"   |  |d \}}t|| j|fS )a  
        Returns the leading term of ``f``.

        The Leading term signifies the term having
        the highest power of the principal generator in the
        expression f along with its coefficient.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT()
        (x**2*y**0, 4)

        r   r   r-   rQ   rW   rb   r   r   r\   r\   r]   LT}  s    zPoly.LTc                 C   s"   |  |d \}}t|| j|fS )z
        Returns the last non-zero term of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET()
        (x**0*y**1, 3)

        r0  r;  r<  r\   r\   r]   ET  s    zPoly.ETc                 C   s0   t | jdr| j }n
t| d| jj|S )z
        Returns maximum norm of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(-x**2 + 2*x - 3, x).max_norm()
        3

        max_norm)r   ra   r?  r2   r   r   r   r\   r\   r]   r?    s    
zPoly.max_normc                 C   s0   t | jdr| j }n
t| d| jj|S )z
        Returns l1 norm of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(-x**2 + 2*x - 3, x).l1_norm()
        6

        l1_norm)r   ra   r@  r2   r   r   r   r\   r\   r]   r@    s    
zPoly.l1_normc                 C   s   | }|j jjstj|fS | }|jr2|j j }t|j drN|j 	 \}}n
t
|d|||| }}|rx|js||fS || fS dS )a  
        Clear denominators, but keep the ground domain.

        Examples
        ========

        >>> from sympy import Poly, S, QQ
        >>> from sympy.abc import x

        >>> f = Poly(x/2 + S(1)/3, x, domain=QQ)

        >>> f.clear_denoms()
        (6, Poly(3*x + 2, x, domain='QQ'))
        >>> f.clear_denoms(convert=True)
        (6, Poly(3*x + 2, x, domain='ZZ'))

        clear_denomsN)ra   r   r  r   Oner   has_assoc_Ringget_ringr   rA  r2   r   r   r   )r}   r   rW   r   r   rY   r\   r\   r]   rA    s    



zPoly.clear_denomsc                 C   sv   | }| |\}}}}||}||}|jr2|js:||fS |jdd\}}|jdd\}}||}||}||fS )a  
        Clear denominators in a rational function ``f/g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2/y + 1, x)
        >>> g = Poly(x**3 + y, x)

        >>> p, q = f.rat_clear_denoms(g)

        >>> p
        Poly(x**2 + y, x, domain='ZZ[y]')
        >>> q
        Poly(y*x**3 + y**2, x, domain='ZZ[y]')

        Tr   )r   r  rC  rA  r  )r}   rX   rW   r   r   abr\   r\   r]   rat_clear_denoms  s    

zPoly.rat_clear_denomsc                 O   s   | }| ddr"|jjjr"| }t|jdr|sF||jjddS |j}|D ]8}t|t	rh|\}}n
|d }}|t
|||}qP||S t|ddS )a  
        Computes indefinite integral of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x + 1, x).integrate()
        Poly(1/3*x**3 + x**2 + x, x, domain='QQ')

        >>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0))
        Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')

        r   T	integrateru   r   N)getra   r   r  r   r   r   rI  rN   r   r   r   r2   )r}   specsrr   rW   ra   specr   r   r\   r\   r]   rI  	  s    



zPoly.integratec                 O   s   | dds"t| g|R i |S t| jdr|sF| | jjddS | j}|D ]8}t|trh|\}}n
|d }}|t|| 	|}qP| |S t
| ddS )aX  
        Computes partial derivative of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x + 1, x).diff()
        Poly(2*x + 2, x, domain='ZZ')

        >>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1))
        Poly(2*x*y, x, y, domain='ZZ')

        evaluateTdiffru   rJ  N)rK  r   r   ra   r   rO  rN   r   r   r   r2   )rW   rL  r   ra   rM  r   r   r\   r\   r]   rO  C	  s    



z	Poly.diffc                 C   sP  | }|du rt |tr<|}| D ]\}}|||}q"|S t |ttfr|}t|t|jkrhtdt	|j|D ]\}}|||}qt|S d| }	}n
|
|}	t|jdst|dz|j||	}
W nt ty@   |std||jjf nFt|g\}\}| ||j}||}|||}|j||	}
Y n0 |j|
|	dS )a  
        Evaluate ``f`` at ``a`` in the given variable.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(x**2 + 2*x + 3, x).eval(2)
        11

        >>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2)
        Poly(5*y + 8, y, domain='ZZ')

        >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)

        >>> f.eval({x: 2})
        Poly(5*y + 2*z + 6, y, z, domain='ZZ')
        >>> f.eval({x: 2, y: 5})
        Poly(2*z + 31, z, domain='ZZ')
        >>> f.eval({x: 2, y: 5, z: 7})
        45

        >>> f.eval((2, 5))
        Poly(2*z + 31, z, domain='ZZ')
        >>> f(2, 5)
        Poly(2*z + 31, z, domain='ZZ')

        Nztoo many values providedr   r   zCannot evaluate at %s in %sr   )rN   ri   r   r   r   rl   rw   rQ   r   r   r   r   ra   r2   r4   r3   r   r&   r   Zunify_with_symbolsr   r   r   )r}   r   rF  r   rW   r   r   r   valuesr   rY   Za_domainZ
new_domainr\   r\   r]   r   k	  s:    



z	Poly.evalc                 G   s
   |  |S )az  
        Evaluate ``f`` at the give values.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)

        >>> f(2)
        Poly(5*y + 2*z + 6, y, z, domain='ZZ')
        >>> f(2, 5)
        Poly(2*z + 31, z, domain='ZZ')
        >>> f(2, 5, 7)
        45

        )r   )rW   rQ  r\   r\   r]   __call__	  s    zPoly.__call__c           	      C   sd   |  |\}}}}|r.|jr.| |  }}t| jdrJ||\}}n
t| d||||fS )a  
        Half extended Euclidean algorithm of ``f`` and ``g``.

        Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
        >>> g = x**3 + x**2 - 4*x - 4

        >>> Poly(f).half_gcdex(Poly(g))
        (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))

        
half_gcdex)r   r  r   r   ra   rS  r2   )	rW   rX   r   r   r   r   r   r-  hr\   r\   r]   rS  	  s    

zPoly.half_gcdexc           
      C   sl   |  |\}}}}|r.|jr.| |  }}t| jdrL||\}}}	n
t| d||||||	fS )a  
        Extended Euclidean algorithm of ``f`` and ``g``.

        Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
        >>> g = x**3 + x**2 - 4*x - 4

        >>> Poly(f).gcdex(Poly(g))
        (Poly(-1/5*x + 3/5, x, domain='QQ'),
         Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'),
         Poly(x + 1, x, domain='QQ'))

        gcdex)r   r  r   r   ra   rU  r2   )
rW   rX   r   r   r   r   r   r-  trT  r\   r\   r]   rU  	  s    

z
Poly.gcdexc                 C   sX   |  |\}}}}|r.|jr.| |  }}t| jdrF||}n
t| d||S )a  
        Invert ``f`` modulo ``g`` when possible.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x))
        Poly(-4/3, x, domain='QQ')

        >>> Poly(x**2 - 1, x).invert(Poly(x - 1, x))
        Traceback (most recent call last):
        ...
        NotInvertible: zero divisor

        invert)r   r  r   r   ra   rW  r2   )rW   rX   r   r   r   r   r   rY   r\   r\   r]   rW  
  s    

zPoly.invertc                 C   s2   t | jdr| jt|}n
t| d| |S )ad  
        Compute ``f**(-1)`` mod ``x**n``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(1, x).revert(2)
        Poly(1, x, domain='ZZ')

        >>> Poly(1 + x, x).revert(1)
        Poly(1, x, domain='ZZ')

        >>> Poly(x**2 - 2, x).revert(2)
        Traceback (most recent call last):
        ...
        NotReversible: only units are reversible in a ring

        >>> Poly(1/x, x).revert(1)
        Traceback (most recent call last):
        ...
        PolynomialError: 1/x contains an element of the generators set

        revert)r   ra   rX  r   r2   r   r  r\   r\   r]   rX  +
  s    
zPoly.revertc                 C   sB   |  |\}}}}t| jdr*||}n
t| dtt||S )ad  
        Computes the subresultant PRS of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x))
        [Poly(x**2 + 1, x, domain='ZZ'),
         Poly(x**2 - 1, x, domain='ZZ'),
         Poly(-2, x, domain='ZZ')]

        subresultants)r   r   ra   rY  r2   rl   r   r  r\   r\   r]   rY  M
  s
    
zPoly.subresultantsc           	      C   sv   |  |\}}}}t| jdrB|r6|j||d\}}qL||}n
t| d|rj||ddtt||fS ||ddS )a  
        Computes the resultant of ``f`` and ``g`` via PRS.

        If includePRS=True, it includes the subresultant PRS in the result.
        Because the PRS is used to calculate the resultant, this is more
        efficient than calling :func:`subresultants` separately.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(x**2 + 1, x)

        >>> f.resultant(Poly(x**2 - 1, x))
        4
        >>> f.resultant(Poly(x**2 - 1, x), includePRS=True)
        (4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'),
             Poly(-2, x, domain='ZZ')])

        	resultant
includePRSr   rP  )r   r   ra   rZ  r2   rl   r   )	rW   rX   r\  r   r   r   r   rY   r"  r\   r\   r]   rZ  f
  s    
zPoly.resultantc                 C   s0   t | jdr| j }n
t| d| j|ddS )z
        Computes the discriminant of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 2*x + 3, x).discriminant()
        -8

        discriminantr   rP  )r   ra   r]  r2   r   r   r\   r\   r]   r]  
  s    
zPoly.discriminantc                 C   s   ddl m} || |S )a  Compute the *dispersion set* of two polynomials.

        For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
        and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:

        .. math::
            \operatorname{J}(f, g)
            & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
            &  = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}

        For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.

        Examples
        ========

        >>> from sympy import poly
        >>> from sympy.polys.dispersion import dispersion, dispersionset
        >>> from sympy.abc import x

        Dispersion set and dispersion of a simple polynomial:

        >>> fp = poly((x - 3)*(x + 3), x)
        >>> sorted(dispersionset(fp))
        [0, 6]
        >>> dispersion(fp)
        6

        Note that the definition of the dispersion is not symmetric:

        >>> fp = poly(x**4 - 3*x**2 + 1, x)
        >>> gp = fp.shift(-3)
        >>> sorted(dispersionset(fp, gp))
        [2, 3, 4]
        >>> dispersion(fp, gp)
        4
        >>> sorted(dispersionset(gp, fp))
        []
        >>> dispersion(gp, fp)
        -oo

        Computing the dispersion also works over field extensions:

        >>> from sympy import sqrt
        >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
        >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
        >>> sorted(dispersionset(fp, gp))
        [2]
        >>> sorted(dispersionset(gp, fp))
        [1, 4]

        We can even perform the computations for polynomials
        having symbolic coefficients:

        >>> from sympy.abc import a
        >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
        >>> sorted(dispersionset(fp))
        [0, 1]

        See Also
        ========

        dispersion

        References
        ==========

        1. [ManWright94]_
        2. [Koepf98]_
        3. [Abramov71]_
        4. [Man93]_
        r   )dispersionset)sympy.polys.dispersionr^  )rW   rX   r^  r\   r\   r]   r^  
  s    HzPoly.dispersionsetc                 C   s   ddl m} || |S )a  Compute the *dispersion* of polynomials.

        For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
        and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:

        .. math::
            \operatorname{dis}(f, g)
            & := \max\{ J(f,g) \cup \{0\} \} \\
            &  = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}

        and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.

        Examples
        ========

        >>> from sympy import poly
        >>> from sympy.polys.dispersion import dispersion, dispersionset
        >>> from sympy.abc import x

        Dispersion set and dispersion of a simple polynomial:

        >>> fp = poly((x - 3)*(x + 3), x)
        >>> sorted(dispersionset(fp))
        [0, 6]
        >>> dispersion(fp)
        6

        Note that the definition of the dispersion is not symmetric:

        >>> fp = poly(x**4 - 3*x**2 + 1, x)
        >>> gp = fp.shift(-3)
        >>> sorted(dispersionset(fp, gp))
        [2, 3, 4]
        >>> dispersion(fp, gp)
        4
        >>> sorted(dispersionset(gp, fp))
        []
        >>> dispersion(gp, fp)
        -oo

        Computing the dispersion also works over field extensions:

        >>> from sympy import sqrt
        >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
        >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
        >>> sorted(dispersionset(fp, gp))
        [2]
        >>> sorted(dispersionset(gp, fp))
        [1, 4]

        We can even perform the computations for polynomials
        having symbolic coefficients:

        >>> from sympy.abc import a
        >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
        >>> sorted(dispersionset(fp))
        [0, 1]

        See Also
        ========

        dispersionset

        References
        ==========

        1. [ManWright94]_
        2. [Koepf98]_
        3. [Abramov71]_
        4. [Man93]_
        r   )
dispersion)r_  r`  )rW   rX   r`  r\   r\   r]   r`  
  s    HzPoly.dispersionc           	      C   sP   |  |\}}}}t| jdr0||\}}}n
t| d||||||fS )a#  
        Returns the GCD of ``f`` and ``g`` and their cofactors.

        Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
        ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
        of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x))
        (Poly(x - 1, x, domain='ZZ'),
         Poly(x + 1, x, domain='ZZ'),
         Poly(x - 2, x, domain='ZZ'))

        	cofactors)r   r   ra   ra  r2   )	rW   rX   r   r   r   r   rT  cffcfgr\   r\   r]   ra  6  s
    
zPoly.cofactorsc                 C   s<   |  |\}}}}t| jdr*||}n
t| d||S )a  
        Returns the polynomial GCD of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x))
        Poly(x - 1, x, domain='ZZ')

        gcd)r   r   ra   rd  r2   r  r\   r\   r]   rd  S  s
    
zPoly.gcdc                 C   s<   |  |\}}}}t| jdr*||}n
t| d||S )a  
        Returns polynomial LCM of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x))
        Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ')

        lcm)r   r   ra   re  r2   r  r\   r\   r]   re  j  s
    
zPoly.lcmc                 C   s<   | j j|}t| j dr(| j |}n
t| d| |S )a  
        Reduce ``f`` modulo a constant ``p``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3)
        Poly(-x**3 - x + 1, x, domain='ZZ')

        trunc)ra   r   r   r   rf  r2   r   )rW   prY   r\   r\   r]   rf    s
    
z
Poly.truncc                 C   sF   | }|r|j jjr| }t|j dr2|j  }n
t|d||S )az  
        Divides all coefficients by ``LC(f)``.

        Examples
        ========

        >>> from sympy import Poly, ZZ
        >>> from sympy.abc import x

        >>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic()
        Poly(x**2 + 2*x + 3, x, domain='QQ')

        >>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic()
        Poly(x**2 + 4/3*x + 2/3, x, domain='QQ')

        monic)ra   r   r  r   r   rh  r2   r   r}   r   rW   rY   r\   r\   r]   rh    s    
z
Poly.monicc                 C   s0   t | jdr| j }n
t| d| jj|S )z
        Returns the GCD of polynomial coefficients.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(6*x**2 + 8*x + 12, x).content()
        2

        content)r   ra   rj  r2   r   r   r   r\   r\   r]   rj    s    
zPoly.contentc                 C   s>   t | jdr| j \}}n
t| d| jj|| |fS )a  
        Returns the content and a primitive form of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**2 + 8*x + 12, x).primitive()
        (2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))

        	primitive)r   ra   rk  r2   r   r   r   )rW   contrY   r\   r\   r]   rk    s    
zPoly.primitivec                 C   s<   |  |\}}}}t| jdr*||}n
t| d||S )a  
        Computes the functional composition of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + x, x).compose(Poly(x - 1, x))
        Poly(x**2 - x, x, domain='ZZ')

        compose)r   r   ra   rm  r2   r  r\   r\   r]   rm    s
    
zPoly.composec                 C   s2   t | jdr| j }n
t| dtt| j|S )a=  
        Computes a functional decomposition of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose()
        [Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')]

        	decompose)r   ra   rn  r2   rl   r   r   r   r\   r\   r]   rn    s    
zPoly.decomposec                 C   s.   t | jdr| j|}n
t| d| |S )a  
        Efficiently compute Taylor shift ``f(x + a)``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 2*x + 1, x).shift(2)
        Poly(x**2 + 2*x + 1, x, domain='ZZ')

        shift)r   ra   ro  r2   r   )rW   rF  rY   r\   r\   r]   ro    s    
z
Poly.shiftc                 C   s^   | |\}}|  |\}}| |\}}t|jdrJ|j|j|j}n
t|d||S )a3  
        Efficiently evaluate the functional transformation ``q**n * f(p/q)``.


        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x))
        Poly(4, x, domain='ZZ')

        	transform)r   r   ra   rp  r2   r   )rW   rg  r  Pr!  r   rY   r\   r\   r]   rp     s    
zPoly.transformc                 C   sL   | }|r|j jjr| }t|j dr2|j  }n
t|dtt|j	|S )a  
        Computes the Sturm sequence of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 - 2*x**2 + x - 3, x).sturm()
        [Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'),
         Poly(3*x**2 - 4*x + 1, x, domain='QQ'),
         Poly(2/9*x + 25/9, x, domain='QQ'),
         Poly(-2079/4, x, domain='QQ')]

        sturm)
ra   r   r  r   r   rr  r2   rl   r   r   ri  r\   r\   r]   rr  :  s    
z
Poly.sturmc                    s4   t  jdr j }n
t d fdd|D S )aI  
        Computes greatest factorial factorization of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**5 + 2*x**4 - x**3 - 2*x**2

        >>> Poly(f).gff_list()
        [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]

        gff_listc                    s   g | ]\}}  ||fqS r\   r   r   rX   r  r   r\   r]   r   l  r   z!Poly.gff_list.<locals>.<listcomp>)r   ra   rs  r2   r   r\   r   r]   rs  W  s    
zPoly.gff_listc                 C   s,   t | jdr| j }n
t| d| |S )a  
        Computes the product, ``Norm(f)``, of the conjugates of
        a polynomial ``f`` defined over a number field ``K``.

        Examples
        ========

        >>> from sympy import Poly, sqrt
        >>> from sympy.abc import x

        >>> a, b = sqrt(2), sqrt(3)

        A polynomial over a quadratic extension.
        Two conjugates x - a and x + a.

        >>> f = Poly(x - a, x, extension=a)
        >>> f.norm()
        Poly(x**2 - 2, x, domain='QQ')

        A polynomial over a quartic extension.
        Four conjugates x - a, x - a, x + a and x + a.

        >>> f = Poly(x - a, x, extension=(a, b))
        >>> f.norm()
        Poly(x**4 - 4*x**2 + 4, x, domain='QQ')

        norm)r   ra   rv  r2   r   )rW   r  r\   r\   r]   rv  n  s    
z	Poly.normc                 C   s>   t | jdr| j \}}}n
t| d|| || |fS )af  
        Computes square-free norm of ``f``.

        Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
        ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
        where ``a`` is the algebraic extension of the ground domain.

        Examples
        ========

        >>> from sympy import Poly, sqrt
        >>> from sympy.abc import x

        >>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm()

        >>> s
        1
        >>> f
        Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>')
        >>> r
        Poly(x**4 - 4*x**2 + 16, x, domain='QQ')

        sqf_norm)r   ra   rw  r2   r   )rW   r-  rX   r  r\   r\   r]   rw    s    
zPoly.sqf_normc                 C   s,   t | jdr| j }n
t| d| |S )z
        Computes square-free part of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 - 3*x - 2, x).sqf_part()
        Poly(x**2 - x - 2, x, domain='ZZ')

        sqf_part)r   ra   rx  r2   r   r   r\   r\   r]   rx    s    
zPoly.sqf_partc                    sH   t  jdr j|\}}n
t d jj| fdd|D fS )a   
        Returns a list of square-free factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16

        >>> Poly(f).sqf_list()
        (2, [(Poly(x + 1, x, domain='ZZ'), 2),
             (Poly(x + 2, x, domain='ZZ'), 3)])

        >>> Poly(f).sqf_list(all=True)
        (2, [(Poly(1, x, domain='ZZ'), 1),
             (Poly(x + 1, x, domain='ZZ'), 2),
             (Poly(x + 2, x, domain='ZZ'), 3)])

        sqf_listc                    s   g | ]\}}  ||fqS r\   rt  ru  r   r\   r]   r     r   z!Poly.sqf_list.<locals>.<listcomp>)r   ra   ry  r2   r   r   )rW   allr   factorsr\   r   r]   ry    s    
zPoly.sqf_listc                    s6   t  jdr j|}n
t d fdd|D S )a  
        Returns a list of square-free factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly, expand
        >>> from sympy.abc import x

        >>> f = expand(2*(x + 1)**3*x**4)
        >>> f
        2*x**7 + 6*x**6 + 6*x**5 + 2*x**4

        >>> Poly(f).sqf_list_include()
        [(Poly(2, x, domain='ZZ'), 1),
         (Poly(x + 1, x, domain='ZZ'), 3),
         (Poly(x, x, domain='ZZ'), 4)]

        >>> Poly(f).sqf_list_include(all=True)
        [(Poly(2, x, domain='ZZ'), 1),
         (Poly(1, x, domain='ZZ'), 2),
         (Poly(x + 1, x, domain='ZZ'), 3),
         (Poly(x, x, domain='ZZ'), 4)]

        sqf_list_includec                    s   g | ]\}}  ||fqS r\   rt  ru  r   r\   r]   r     r   z)Poly.sqf_list_include.<locals>.<listcomp>)r   ra   r|  r2   )rW   rz  r{  r\   r   r]   r|    s    
zPoly.sqf_list_includec                    sn   t  jdrDz j \}}W qN ty@   tj dfgf Y S 0 n
t d jj| fdd|D fS )a~  
        Returns a list of irreducible factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y

        >>> Poly(f).factor_list()
        (2, [(Poly(x + y, x, y, domain='ZZ'), 1),
             (Poly(x**2 + 1, x, y, domain='ZZ'), 2)])

        factor_listru   c                    s   g | ]\}}  ||fqS r\   rt  ru  r   r\   r]   r     r   z$Poly.factor_list.<locals>.<listcomp>)	r   ra   r}  r3   r   rB  r2   r   r   )rW   r   r{  r\   r   r]   r}    s    
zPoly.factor_listc                    sV   t  jdr:z j }W qD ty6    dfg Y S 0 n
t d fdd|D S )a  
        Returns a list of irreducible factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y

        >>> Poly(f).factor_list_include()
        [(Poly(2*x + 2*y, x, y, domain='ZZ'), 1),
         (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]

        factor_list_includeru   c                    s   g | ]\}}  ||fqS r\   rt  ru  r   r\   r]   r   7  r   z,Poly.factor_list_include.<locals>.<listcomp>)r   ra   r~  r3   r2   )rW   r{  r\   r   r]   r~    s    
zPoly.factor_list_includec                 C   s
  |dur"t |}|dkr"td|dur4t |}|durFt |}t| jdrl| jj||||||d}n
t| d|rdd }|stt||S dd	 }	|\}
}tt||
tt|	|fS d
d }|stt||S dd	 }	|\}
}tt||
tt|	|fS dS )a  
        Compute isolating intervals for roots of ``f``.

        For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.

        References
        ==========
        .. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root
            Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
        .. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the
            Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear
            Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 3, x).intervals()
        [((-2, -1), 1), ((1, 2), 1)]
        >>> Poly(x**2 - 3, x).intervals(eps=1e-2)
        [((-26/15, -19/11), 1), ((19/11, 26/15), 1)]

        Nr   !'eps' must be a positive rational	intervalsrz  epsinfsupfastsqfc                 S   s   | \}}t |t |fS rz   r(   r   )intervalr-  rV  r\   r\   r]   _reale  s    zPoly.intervals.<locals>._realc                 S   s@   | \\}}\}}t |tt |  t |tt |  fS rz   r(   r   r   )	rectangleuvr-  rV  r\   r\   r]   _complexl  s    z Poly.intervals.<locals>._complexc                 S   s$   | \\}}}t |t |f|fS rz   r  )r  r-  rV  r  r\   r\   r]   r  u  s    c                 S   sH   | \\\}}\}}}t |tt |  t |tt |  f|fS rz   r  )r  r  r  r-  rV  r  r\   r\   r]   r  |  s    )	r(   r   r   r   ra   r  r2   rl   r   )rW   rz  r  r  r  r  r  rY   r  r  Z	real_partZcomplex_partr\   r\   r]   r  9  s4    



zPoly.intervalsc           	      C   s   |r| j stdt|t| }}|durJt|}|dkrJtd|dur\t|}n|du rhd}t| jdr| jj|||||d\}}n
t	| dt
|t
|fS )a  
        Refine an isolating interval of a root to the given precision.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2)
        (19/11, 26/15)

        z&only square-free polynomials supportedNr   r  ru   refine_root)r  stepsr  )is_sqfr7   r(   r   r   r   r   ra   r  r2   r   )	rW   r-  rV  r  r  r  	check_sqfr   Tr\   r\   r]   r    s    



zPoly.refine_rootc                 C   sL  d\}}|dur^t |}|tju r(d}n6| \}}|sDt|}ntttj||fd }}|durt |}|tju r~d}n6| \}}|st|}ntttj||fd }}|r|rt	| j
dr| j
j||d}n
t| dn^|r |dur |tjf}|r|dur|tjf}t	| j
dr:| j
j||d}n
t| dt|S )a<  
        Return the number of roots of ``f`` in ``[inf, sup]`` interval.

        Examples
        ========

        >>> from sympy import Poly, I
        >>> from sympy.abc import x

        >>> Poly(x**4 - 4, x).count_roots(-3, 3)
        2
        >>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I)
        1

        )TTNFcount_real_rootsr  r  count_complex_roots)r    r   NegativeInfinityas_real_imagr(   r   rl   r   Infinityr   ra   r  r2   r   r  r   )rW   r  r  Zinf_realZsup_realreimcountr\   r\   r]   count_roots  s:    




zPoly.count_rootsc                 C   s   t jjj| ||dS )a  
        Get an indexed root of a polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4)

        >>> f.root(0)
        -1/2
        >>> f.root(1)
        2
        >>> f.root(2)
        2
        >>> f.root(3)
        Traceback (most recent call last):
        ...
        IndexError: root index out of [-3, 2] range, got 3

        >>> Poly(x**5 + x + 1).root(0)
        CRootOf(x**3 - x**2 + 1, 0)

        radicals)sympypolysrootoftoolsrootof)rW   r   r  r\   r\   r]   root  s    z	Poly.rootc                 C   s,   t jjjj| |d}|r|S t|ddS dS )aL  
        Return a list of real roots with multiplicities.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots()
        [-1/2, 2, 2]
        >>> Poly(x**3 + x + 1).real_roots()
        [CRootOf(x**3 + x + 1, 0)]

        r  FmultipleN)r  r  r  CRootOf
real_rootsrE   )rW   r  r  Zrealsr\   r\   r]   r    s    zPoly.real_rootsc                 C   s,   t jjjj| |d}|r|S t|ddS dS )a  
        Return a list of real and complex roots with multiplicities.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots()
        [-1/2, 2, 2]
        >>> Poly(x**3 + x + 1).all_roots()
        [CRootOf(x**3 + x + 1, 0),
         CRootOf(x**3 + x + 1, 1),
         CRootOf(x**3 + x + 1, 2)]

        r  Fr  N)r  r  r  r  	all_rootsrE   )rW   r  r  rootsr\   r\   r]   r    s    zPoly.all_roots   2   c                    s  | j rtd|  |  dkr"g S | jjtu rBdd |  D }n| jjtu rdd |  D }t|   fdd|  D }nLfdd|  D }zdd |D }W n" t	y   t
d	| jj Y n0 tjj}tj_dd
lm zz>tj|||d|  d d}tttt|fddd}W nx ty   z>tj|||d|  d d}tttt|fddd}W n$ ty   td|f Y n0 Y n0 W |tj_n
|tj_0 |S )a  
        Compute numerical approximations of roots of ``f``.

        Parameters
        ==========

        n ... the number of digits to calculate
        maxsteps ... the maximum number of iterations to do

        If the accuracy `n` cannot be reached in `maxsteps`, it will raise an
        exception. You need to rerun with higher maxsteps.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 3).nroots(n=15)
        [-1.73205080756888, 1.73205080756888]
        >>> Poly(x**2 - 3).nroots(n=30)
        [-1.73205080756887729352744634151, 1.73205080756887729352744634151]

        z$Cannot compute numerical roots of %sr   c                 S   s   g | ]}t |qS r\   r   r   r   r\   r\   r]   r   Z  r   zPoly.nroots.<locals>.<listcomp>c                 S   s   g | ]
}|j qS r\   )r  r  r\   r\   r]   r   \  r   c                    s   g | ]}t |  qS r\   r  r  )facr\   r]   r   ^  r   c                    s   g | ]}|j  d  qS )r   )r   r  r  r  r\   r]   r   `  s   c                 S   s   g | ]}t j| qS r\   )mpmathmpcr  r\   r\   r]   r   c  r   z!Numerical domain expected, got %ssignF
   )maxstepscleanuperror	extraprecc                    s$   | j r
dnd| jt| j  | j fS Nru   r   imagrealr  r  r  r\   r]   <lambda>u  r   zPoly.nroots.<locals>.<lambda>keyr  c                    s$   | j r
dnd| jt| j  | j fS r  r  r  r  r\   r]   r  |  r   z7convergence to root failed; try n < %s or maxsteps > %s)is_multivariater8   r&  ra   r   r)   r   r(   r   r+  r3   r  mpdps$sympy.functions.elementary.complexesr  	polyrootsrl   r   r    sortedrK   )rW   r   r  r  r   denomsr  r  r\   )r  r   r  r]   nroots6  s^    


zPoly.nrootsc                 C   sP   | j rtd|  i }|  d D ](\}}|jr"| \}}||| | < q"|S )a  
        Compute roots of ``f`` by factorization in the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots()
        {0: 2, 1: 2}

        z!Cannot compute ground roots of %sru   )r  r8   r}  	is_linearr   )rW   r  factorr  rF  rG  r\   r\   r]   ground_roots  s    zPoly.ground_rootsc                 C   sr   | j rtdt|}|jr.|dkr.t|}ntd| | j}td}| | j	
|| | ||}|||S )af  
        Construct a polynomial with n-th powers of roots of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(x**4 - x**2 + 1)

        >>> f.nth_power_roots_poly(2)
        Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ')
        >>> f.nth_power_roots_poly(3)
        Poly(x**4 + 2*x**2 + 1, x, domain='ZZ')
        >>> f.nth_power_roots_poly(4)
        Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ')
        >>> f.nth_power_roots_poly(12)
        Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ')

        zmust be a univariate polynomialru   z&'n' must an integer and n >= 1, got %srV  )r  r8   r    
is_Integerr   r   r   r   rZ  r   rP   r   )rW   r   r5  r   rV  r  r\   r\   r]   nth_power_roots_poly  s    
zPoly.nth_power_roots_polyc                    s   | j rtd| j }| j |}|d }td| di \}}}}t|}|d |d    fdd}	|	||	| }
}|
j	|j	 d |
j
|j
 d  |k S )a  
        Decide whether two roots of this polynomial are equal.

        Examples
        ========

        >>> from sympy import Poly, cyclotomic_poly, exp, I, pi
        >>> f = Poly(cyclotomic_poly(5))
        >>> r0 = exp(2*I*pi/5)
        >>> indices = [i for i, r in enumerate(f.all_roots()) if f.same_root(r, r0)]
        >>> print(indices)
        [3]

        Raises
        ======

        DomainError
            If the domain of the polynomial is not :ref:`ZZ`, :ref:`QQ`,
            :ref:`RR`, or :ref:`CC`.
        MultivariatePolynomialError
            If the polynomial is not univariate.
        PolynomialError
            If the polynomial is of degree < 2.

        zMust be a univariate polynomial	   ru      c                    s   t t|  dS )NrJ  )r   r   r   rJ  r\   r]   r    r   z Poly.same_root.<locals>.<lambda>)r  r8   ra   Zmignotte_sep_bound_squaredr   	get_fieldr   r   r   r  r  )rW   rF  rG  Zdom_delta_sqZdelta_sqZeps_sqr  r   r   evABr\   rJ  r]   	same_root  s    
zPoly.same_rootc                 C   s   |  |\}}}}t|dr,|j||d}n
t| d|s~|jrH| }|\}}	}
}||}||	}	||	 ||
||fS tt||S dS )a  
        Cancel common factors in a rational function ``f/g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x))
        (1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))

        >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True)
        (Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))

        cancel)includeN)	r   r   r  r2   rC  rD  r   r   r   )rW   rX   r  r   r   r   r   rY   cpcqrg  r  r\   r\   r]   r    s    



zPoly.cancelc                 C   s   | j jS )a  
        Returns ``True`` if ``f`` is a zero polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(0, x).is_zero
        True
        >>> Poly(1, x).is_zero
        False

        )ra   is_zeror   r\   r\   r]   r  !  s    zPoly.is_zeroc                 C   s   | j jS )a  
        Returns ``True`` if ``f`` is a unit polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(0, x).is_one
        False
        >>> Poly(1, x).is_one
        True

        )ra   is_oner   r\   r\   r]   r  4  s    zPoly.is_onec                 C   s   | j jS )a   
        Returns ``True`` if ``f`` is a square-free polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 2*x + 1, x).is_sqf
        False
        >>> Poly(x**2 - 1, x).is_sqf
        True

        )ra   r  r   r\   r\   r]   r  G  s    zPoly.is_sqfc                 C   s   | j jS )a   
        Returns ``True`` if the leading coefficient of ``f`` is one.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 2, x).is_monic
        True
        >>> Poly(2*x + 2, x).is_monic
        False

        )ra   is_monicr   r\   r\   r]   r  Z  s    zPoly.is_monicc                 C   s   | j jS )a;  
        Returns ``True`` if GCD of the coefficients of ``f`` is one.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**2 + 6*x + 12, x).is_primitive
        False
        >>> Poly(x**2 + 3*x + 6, x).is_primitive
        True

        )ra   is_primitiver   r\   r\   r]   r  m  s    zPoly.is_primitivec                 C   s   | j jS )aJ  
        Returns ``True`` if ``f`` is an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x, x).is_ground
        False
        >>> Poly(2, x).is_ground
        True
        >>> Poly(y, x).is_ground
        True

        )ra   	is_groundr   r\   r\   r]   r    s    zPoly.is_groundc                 C   s   | j jS )a,  
        Returns ``True`` if ``f`` is linear in all its variables.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x + y + 2, x, y).is_linear
        True
        >>> Poly(x*y + 2, x, y).is_linear
        False

        )ra   r  r   r\   r\   r]   r    s    zPoly.is_linearc                 C   s   | j jS )a6  
        Returns ``True`` if ``f`` is quadratic in all its variables.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x*y + 2, x, y).is_quadratic
        True
        >>> Poly(x*y**2 + 2, x, y).is_quadratic
        False

        )ra   is_quadraticr   r\   r\   r]   r    s    zPoly.is_quadraticc                 C   s   | j jS )a%  
        Returns ``True`` if ``f`` is zero or has only one term.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(3*x**2, x).is_monomial
        True
        >>> Poly(3*x**2 + 1, x).is_monomial
        False

        )ra   is_monomialr   r\   r\   r]   r    s    zPoly.is_monomialc                 C   s   | j jS )aZ  
        Returns ``True`` if ``f`` is a homogeneous polynomial.

        A homogeneous polynomial is a polynomial whose all monomials with
        non-zero coefficients have the same total degree. If you want not
        only to check if a polynomial is homogeneous but also compute its
        homogeneous order, then use :func:`Poly.homogeneous_order`.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x*y, x, y).is_homogeneous
        True
        >>> Poly(x**3 + x*y, x, y).is_homogeneous
        False

        )ra   is_homogeneousr   r\   r\   r]   r    s    zPoly.is_homogeneousc                 C   s   | j jS )aG  
        Returns ``True`` if ``f`` has no factors over its domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible
        True
        >>> Poly(x**2 + 1, x, modulus=2).is_irreducible
        False

        )ra   is_irreducibler   r\   r\   r]   r    s    zPoly.is_irreduciblec                 C   s   t | jdkS )a  
        Returns ``True`` if ``f`` is a univariate polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x + 1, x).is_univariate
        True
        >>> Poly(x*y**2 + x*y + 1, x, y).is_univariate
        False
        >>> Poly(x*y**2 + x*y + 1, x).is_univariate
        True
        >>> Poly(x**2 + x + 1, x, y).is_univariate
        False

        ru   rw   rQ   r   r\   r\   r]   r     s    zPoly.is_univariatec                 C   s   t | jdkS )a  
        Returns ``True`` if ``f`` is a multivariate polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x + 1, x).is_multivariate
        False
        >>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate
        True
        >>> Poly(x*y**2 + x*y + 1, x).is_multivariate
        False
        >>> Poly(x**2 + x + 1, x, y).is_multivariate
        True

        ru   r  r   r\   r\   r]   r    s    zPoly.is_multivariatec                 C   s   | j jS )a  
        Returns ``True`` if ``f`` is a cyclotomic polnomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1

        >>> Poly(f).is_cyclotomic
        False

        >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1

        >>> Poly(g).is_cyclotomic
        True

        )ra   is_cyclotomicr   r\   r\   r]   r  '  s    zPoly.is_cyclotomicc                 C   s   |   S rz   )r  r   r\   r\   r]   __abs__?  s    zPoly.__abs__c                 C   s   |   S rz   )r  r   r\   r\   r]   __neg__B  s    zPoly.__neg__c                 C   s
   |  |S rz   r   rW   rX   r\   r\   r]   __add__E  s    zPoly.__add__c                 C   s
   | | S rz   r  r  r\   r\   r]   __radd__I  s    zPoly.__radd__c                 C   s
   |  |S rz   r  r  r\   r\   r]   __sub__M  s    zPoly.__sub__c                 C   s
   | | S rz   r  r  r\   r\   r]   __rsub__Q  s    zPoly.__rsub__c                 C   s
   |  |S rz   r   r  r\   r\   r]   __mul__U  s    zPoly.__mul__c                 C   s
   | | S rz   r   r  r\   r\   r]   __rmul__Y  s    zPoly.__rmul__r   c                 C   s    |j r|dkr| |S tS d S )Nr   )r  r  rS   )rW   r   r\   r\   r]   __pow__]  s    
zPoly.__pow__c                 C   s
   |  |S rz   r  r  r\   r\   r]   
__divmod__d  s    zPoly.__divmod__c                 C   s
   | | S rz   r  r  r\   r\   r]   __rdivmod__h  s    zPoly.__rdivmod__c                 C   s
   |  |S rz   r#  r  r\   r\   r]   __mod__l  s    zPoly.__mod__c                 C   s
   | | S rz   r  r  r\   r\   r]   __rmod__p  s    zPoly.__rmod__c                 C   s
   |  |S rz   r$  r  r\   r\   r]   __floordiv__t  s    zPoly.__floordiv__c                 C   s
   | | S rz   r  r  r\   r\   r]   __rfloordiv__x  s    zPoly.__rfloordiv__rX   c                 C   s   |   |   S rz   rU   r  r\   r\   r]   __truediv__|  s    zPoly.__truediv__c                 C   s   |  |    S rz   r  r  r\   r\   r]   __rtruediv__  s    zPoly.__rtruediv__otherc              
   C   sv   | | }}|j sFz|j||j| d}W n tttfyD   Y dS 0 |j|jkrVdS |jj|jjkrjdS |j|jkS Nr   F)	rm   r   rQ   r   r7   r3   r4   ra   r   )r}   r  rW   rX   r\   r\   r]   __eq__  s    
zPoly.__eq__c                 C   s
   | |k S rz   r\   r  r\   r\   r]   __ne__  s    zPoly.__ne__c                 C   s   | j  S rz   )r  r   r\   r\   r]   __bool__  s    zPoly.__bool__c                 C   s   |s| |kS |  t|S d S rz   )
_strict_eqr    rW   rX   strictr\   r\   r]   eq  s    zPoly.eqc                 C   s   | j ||d S )Nr  )r  r  r\   r\   r]   ne  s    zPoly.nec                 C   s*   t || jo(| j|jko(| jj|jddS NTr  )rN   r   rQ   ra   r  r  r\   r\   r]   r    s    zPoly._strict_eq)NN)N)N)N)N)N)N)FF)F)F)T)T)T)T)r   )N)N)ru   F)N)N)N)N)F)NT)T)T)T)F)N)N)T)T)F)F)FNNNFF)NNFF)NN)T)TT)TT)r  r  T)F)F)F)rV   
__module____qualname____doc__	__slots__is_commutativerm   _op_priorityrt   classmethodry   propertyr~   rr   r   r   r   r   rP   rj   rk   rn   ro   rg   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   rc   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   rU   r   r   r   r  r  r  r	  r  r  r  r  r  r  r   r  r   r  r  r  r  r  r  r  r#  r$  r%  r   r&  r'  r(  r)  r*  r.  r/  r1  r4  r2  r   r9  r:  r=  r>  r?  r@  rA  rH  rI  rO  _eval_derivativer   rR  rS  rU  rW  rX  rY  rZ  r]  r^  r`  ra  rd  re  rf  rh  rj  rk  rm  rn  ro  rp  rr  rs  rv  rw  rx  ry  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r  r  r_   r  r  r  r  r  r  r   rS   r  r  r  r  r  r  r  r  r  r   r  r  r  r  r  __classcell__r\   r\   r   r]   rO   e   s  5











	






3#$"%&%*''%%*"%"''(&K!"%KK
#!L%?P(3%




rO   c                       sV   e Zd ZdZdd Z fddZedd Zede	d	d
 Z
dd Zdd Z  ZS )PurePolyz)Class for representing pure polynomials. c                 C   s   | j fS )z$Allow SymPy to hash Poly instances. )ra   r|   r\   r\   r]   r     s    zPurePoly._hashable_contentc                    s
   t   S rz   r   r|   r   r\   r]   r     s    zPurePoly.__hash__c                 C   s   | j S )aR  
        Free symbols of a polynomial.

        Examples
        ========

        >>> from sympy import PurePoly
        >>> from sympy.abc import x, y

        >>> PurePoly(x**2 + 1).free_symbols
        set()
        >>> PurePoly(x**2 + y).free_symbols
        set()
        >>> PurePoly(x**2 + y, x).free_symbols
        {y}

        )r   r|   r\   r\   r]   r     s    zPurePoly.free_symbolsr  c              
   C   s   | | }}|j sFz|j||j| d}W n tttfyD   Y dS 0 t|jt|jkr^dS |jj	|jj	krz|jj	
|jj	|j}W n ty   Y dS 0 ||}||}|j|jkS r  )rm   r   rQ   r   r7   r3   r4   rw   ra   r   r   r5   r   )r}   r  rW   rX   r   r\   r\   r]   r     s     


zPurePoly.__eq__c                 C   s   t || jo| jj|jddS r	  )rN   r   ra   r  r  r\   r\   r]   r    s    zPurePoly._strict_eqc                    s   t |}|jsZz(| jj| j| j| j| jj|fW S  tyX   td| |f Y n0 t| j	t|j	kr~td| |f t
| jtrt
|jtstd| |f | j | j	}| jj|jj|}| j|}|j|}||d f fdd	}||||fS )Nr   c                    sD   |d ur2|d | ||d d   }|s2| | S  j| g|R  S r   r   r   r   r\   r]   r     s
    
zPurePoly._unify.<locals>.per)r    rm   ra   r   r   r   r4   r5   rw   rQ   rN   r/   r   r   r   )rW   rX   rQ   r   r   r   r   r\   r   r]   r     s"    (	zPurePoly._unify)rV   r
  r  r  r   r   r  r   r   rS   r   r  r   r  r\   r\   r   r]   r    s   

r  c                 O   s   t ||}t| |S r   )rd   re   _poly_from_exprr~   rQ   rr   rs   r\   r\   r]   poly_from_expr  s    r  c                 C   s  | t |  }} t| ts&t||| nJ| jrb| j| |}|j|_|j|_|j	du rZd|_	||fS |j
rp| 
 } t| |\}}|jst||| ttt|  \}}|j}|du rt||d\|_}ntt|j|}ttt||}t||}|j	du r
d|_	||fS )r   NTr   F)r    rN   r   r:   rm   r   rn   rQ   r   r  expandrA   rl   r   r   r&   r   r   ri   rO   rj   )r~   rs   origr   ra   r   r   r   r\   r\   r]   r    s2    

r  c                 O   s   t ||}t| |S )(Construct polynomials from expressions. )rd   re   _parallel_poly_from_expr)exprsrQ   rr   rs   r\   r\   r]   parallel_poly_from_expr7  s    r  c                 C   s  t | dkr~| \}}t|tr~t|tr~|j||}|j||}||\}}|j|_|j|_|jdu rrd|_||g|fS t	| g  }} g g  }}d}t
|D ]T\}}	t|	}	t|	tr|	jr|| q|| |jr|	 }	nd}| |	 q|rt||| d|r.|D ]}| |  | |< qt| |\}
}|jsRt||| dddlm} |jD ]}t||rdtdqdg g  }}g }g }|
D ]@}t	tt	|  \}}|| || |t | q|j}|du rt||d\|_}nt	t|j|}|D ]$}||d|  ||d }qg }t||D ]2\}}tt	t||}t||}|| qD|jdu rt||_||fS )	r  r  NTFr   	Piecewisez&Piecewise generators do not make senser   )rw   rN   rO   r   rn   r   rQ   r   r  rl   r   r    r   rm   appendr  r:   rU   rB   $sympy.functions.elementary.piecewiser  r7   r   r   extendr&   r   r   ri   rj   bool)r  rs   rW   rX   ZorigsZ_exprsZ_polysfailedr   r~   repsr  r  Zcoeffs_listlengthsr   r   ra   r   r   r   r  r   r\   r\   r]   r  >  sv    










r  c                 C   s   t | } || vr|| |< | S )z7Add a new ``(key, value)`` pair to arguments ``dict``. )ri   )rr   r  r   r\   r\   r]   _update_args  s    r'  c                 C   s   t | dd} t |ddj}| jr0| }| j}n*| j}|sZ|rLt| \}}nt| |\}}|rn| rhtjS tjS |s| jr||jvrt|  \}}||jvrtjS n4| jst	| j
dkrttd| tt| j
|f ||}t|trt|S tjS )a  
    Return the degree of ``f`` in the given variable.

    The degree of 0 is negative infinity.

    Examples
    ========

    >>> from sympy import degree
    >>> from sympy.abc import x, y

    >>> degree(x**2 + y*x + 1, gen=x)
    2
    >>> degree(x**2 + y*x + 1, gen=y)
    1
    >>> degree(0, x)
    -oo

    See also
    ========

    sympy.polys.polytools.Poly.total_degree
    degree_list
    Tr  ru   z
         A symbolic generator of interest is required for a multivariate
         expression like func = %s, e.g. degree(func, gen = %s) instead of
         degree(func, gen = %s).
        )r    	is_Numberrm   rU   r  r   Zeror  rQ   rw   r   r+  rG   nextr   r&  rN   r   r   )rW   r   Z
gen_is_Numrg  ZisNumr   rY   r\   r\   r]   r&    s.    

r&  c                 G   sH   t | }|jr| }|jr"d}n| jr2|p0| j}t|| }t|S )a  
    Return the total_degree of ``f`` in the given variables.

    Examples
    ========
    >>> from sympy import total_degree, Poly
    >>> from sympy.abc import x, y

    >>> total_degree(1)
    0
    >>> total_degree(x + x*y)
    2
    >>> total_degree(x + x*y, x)
    1

    If the expression is a Poly and no variables are given
    then the generators of the Poly will be used:

    >>> p = Poly(x + x*y, y)
    >>> total_degree(p)
    1

    To deal with the underlying expression of the Poly, convert
    it to an Expr:

    >>> total_degree(p.as_expr())
    2

    This is done automatically if any variables are given:

    >>> total_degree(p, x)
    1

    See also
    ========
    degree
    r   )r    rm   rU   r(  rQ   rO   r(  r   )rW   rQ   rg  rvr\   r\   r]   r(    s    (
r(  c              
   O   st   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | }ttt|S )z
    Return a list of degrees of ``f`` in all variables.

    Examples
    ========

    >>> from sympy import degree_list
    >>> from sympy.abc import x, y

    >>> degree_list(x**2 + y*x + 1)
    (2, 1)

    r  r'  ru   N)	rd   allowed_flagsr  r:   r;   r'  r   r   r   )rW   rQ   rr   r   rs   r  degreesr\   r\   r]   r'    s    "r'  c              
   O   sl   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 |j|jdS )z
    Return the leading coefficient of ``f``.

    Examples
    ========

    >>> from sympy import LC
    >>> from sympy.abc import x, y

    >>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
    4

    r  r.  ru   Nr   )rd   r,  r  r:   r;   r.  rb   rW   rQ   rr   r   rs   r  r\   r\   r]   r.  1  s    "r.  c              
   O   st   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 |j|jd}| S )z
    Return the leading monomial of ``f``.

    Examples
    ========

    >>> from sympy import LM
    >>> from sympy.abc import x, y

    >>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
    x**2

    r  r9  ru   Nr   )rd   r,  r  r:   r;   r9  rb   rU   )rW   rQ   rr   r   rs   r  r   r\   r\   r]   r9  J  s    "r9  c              
   O   s|   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 |j|jd\}}||  S )z
    Return the leading term of ``f``.

    Examples
    ========

    >>> from sympy import LT
    >>> from sympy.abc import x, y

    >>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
    4*x**2

    r  r=  ru   Nr   )rd   r,  r  r:   r;   r=  rb   rU   )rW   rQ   rr   r   rs   r  r   r   r\   r\   r]   r=  d  s    "r=  c           
   
   O   s   t |dg z&t| |fg|R i |\\}}}W n0 tyd } ztdd|W Y d}~n
d}~0 0 ||\}}	|js| |	 fS ||	fS dS )z
    Compute polynomial pseudo-division of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import pdiv
    >>> from sympy.abc import x

    >>> pdiv(x**2 + 1, 2*x - 4)
    (2*x + 4, 20)

    r  r  r  N)rd   r,  r  r:   r;   r  r  rU   
rW   rX   rQ   rr   r   r   rs   r  r  r  r\   r\   r]   r  ~  s    &"r  c           	   
   O   s   t |dg z&t| |fg|R i |\\}}}W n0 tyd } ztdd|W Y d}~n
d}~0 0 ||}|js~| S |S dS )z
    Compute polynomial pseudo-remainder of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import prem
    >>> from sympy.abc import x

    >>> prem(x**2 + 1, 2*x - 4)
    20

    r  r  r  N)rd   r,  r  r:   r;   r  r  rU   	rW   rX   rQ   rr   r   r   rs   r  r  r\   r\   r]   r    s    &"
r  c           	   
   O   s   t |dg z&t| |fg|R i |\\}}}W n0 tyd } ztdd|W Y d}~n
d}~0 0 z||}W n ty   t| |Y n0 |js| S |S dS )z
    Compute polynomial pseudo-quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import pquo
    >>> from sympy.abc import x

    >>> pquo(x**2 + 1, 2*x - 4)
    2*x + 4
    >>> pquo(x**2 - 1, 2*x - 1)
    2*x + 1

    r  r  r  N)	rd   r,  r  r:   r;   r  r9   r  rU   	rW   rX   rQ   rr   r   r   rs   r  r  r\   r\   r]   r    s    &"r  c           	   
   O   s   t |dg z&t| |fg|R i |\\}}}W n0 tyd } ztdd|W Y d}~n
d}~0 0 ||}|js~| S |S dS )a_  
    Compute polynomial exact pseudo-quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import pexquo
    >>> from sympy.abc import x

    >>> pexquo(x**2 - 1, 2*x - 2)
    2*x + 2

    >>> pexquo(x**2 + 1, 2*x - 4)
    Traceback (most recent call last):
    ...
    ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

    r  r  r  N)rd   r,  r  r:   r;   r  r  rU   r1  r\   r\   r]   r    s    &"
r  c           
   
   O   s   t |ddg z&t| |fg|R i |\\}}}W n0 tyf } ztdd|W Y d}~n
d}~0 0 |j||jd\}}	|js| |	 fS ||	fS dS )a  
    Compute polynomial division of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import div, ZZ, QQ
    >>> from sympy.abc import x

    >>> div(x**2 + 1, 2*x - 4, domain=ZZ)
    (0, x**2 + 1)
    >>> div(x**2 + 1, 2*x - 4, domain=QQ)
    (x/2 + 1, 5)

    r   r  r  r  Nr   )	rd   r,  r  r:   r;   r  r   r  rU   r/  r\   r\   r]   r     s    &"r  c           	   
   O   s   t |ddg z&t| |fg|R i |\\}}}W n0 tyf } ztdd|W Y d}~n
d}~0 0 |j||jd}|js| S |S dS )a  
    Compute polynomial remainder of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import rem, ZZ, QQ
    >>> from sympy.abc import x

    >>> rem(x**2 + 1, 2*x - 4, domain=ZZ)
    x**2 + 1
    >>> rem(x**2 + 1, 2*x - 4, domain=QQ)
    5

    r   r  r#  r  Nr2  )	rd   r,  r  r:   r;   r#  r   r  rU   r0  r\   r\   r]   r#     s    &"r#  c           	   
   O   s   t |ddg z&t| |fg|R i |\\}}}W n0 tyf } ztdd|W Y d}~n
d}~0 0 |j||jd}|js| S |S dS )z
    Compute polynomial quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import quo
    >>> from sympy.abc import x

    >>> quo(x**2 + 1, 2*x - 4)
    x/2 + 1
    >>> quo(x**2 - 1, x - 1)
    x + 1

    r   r  r$  r  Nr2  )	rd   r,  r  r:   r;   r$  r   r  rU   r1  r\   r\   r]   r$  @  s    &"r$  c           	   
   O   s   t |ddg z&t| |fg|R i |\\}}}W n0 tyf } ztdd|W Y d}~n
d}~0 0 |j||jd}|js| S |S dS )aQ  
    Compute polynomial exact quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import exquo
    >>> from sympy.abc import x

    >>> exquo(x**2 - 1, x - 1)
    x + 1

    >>> exquo(x**2 + 1, 2*x - 4)
    Traceback (most recent call last):
    ...
    ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

    r   r  r%  r  Nr2  )	rd   r,  r  r:   r;   r%  r   r  rU   r1  r\   r\   r]   r%  `  s    &"r%  c                 O   s   t |ddg z&t| |fg|R i |\\}}}W n ty } zrt|j\}\}	}
z||	|
\}}W n ty   tdd|Y n"0 |	||	|fW  Y d}~S W Y d}~n
d}~0 0 |j||j
d\}}|js| | fS ||fS dS )aT  
    Half extended Euclidean algorithm of ``f`` and ``g``.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    Examples
    ========

    >>> from sympy import half_gcdex
    >>> from sympy.abc import x

    >>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
    (3/5 - x/5, x + 1)

    r   r  rS  r  Nr2  )rd   r,  r  r:   r&   r  rS  rf   r;   r   r   r  rU   )rW   rX   rQ   rr   r   r   rs   r  r   rF  rG  r-  rT  r\   r\   r]   rS    s    &6rS  c                 O   s  t |ddg z&t| |fg|R i |\\}}}W n ty } z|t|j\}\}	}
z||	|
\}}}W n ty   tdd|Y n*0 |	||	||	|fW  Y d}~S W Y d}~n
d}~0 0 |j||j
d\}}}|js | | | fS |||fS dS )aZ  
    Extended Euclidean algorithm of ``f`` and ``g``.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy import gcdex
    >>> from sympy.abc import x

    >>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
    (3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1)

    r   r  rU  r  Nr2  )rd   r,  r  r:   r&   r  rU  rf   r;   r   r   r  rU   )rW   rX   rQ   rr   r   r   rs   r  r   rF  rG  r-  rV  rT  r\   r\   r]   rU    s    &>rU  c                 O   s   t |ddg z&t| |fg|R i |\\}}}W nv ty } z^t|j\}\}	}
z |||	|
W W  Y d}~S  ty   t	dd|Y n0 W Y d}~n
d}~0 0 |j||j
d}|js| S |S dS )a  
    Invert ``f`` modulo ``g`` when possible.

    Examples
    ========

    >>> from sympy import invert, S, mod_inverse
    >>> from sympy.abc import x

    >>> invert(x**2 - 1, 2*x - 1)
    -4/3

    >>> invert(x**2 - 1, x - 1)
    Traceback (most recent call last):
    ...
    NotInvertible: zero divisor

    For more efficient inversion of Rationals,
    use the :obj:`~.mod_inverse` function:

    >>> mod_inverse(3, 5)
    2
    >>> (S(2)/5).invert(S(7)/3)
    5/2

    See Also
    ========

    sympy.core.numbers.mod_inverse

    r   r  NrW  r  r2  )rd   r,  r  r:   r&   r  r   rW  rf   r;   r   r  rU   )rW   rX   rQ   rr   r   r   rs   r  r   rF  rG  rT  r\   r\   r]   rW    s    !& (rW  c           	   
   O   s   t |dg z&t| |fg|R i |\\}}}W n0 tyd } ztdd|W Y d}~n
d}~0 0 ||}|jsdd |D S |S dS )z
    Compute subresultant PRS of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import subresultants
    >>> from sympy.abc import x

    >>> subresultants(x**2 + 1, x**2 - 1)
    [x**2 + 1, x**2 - 1, -2]

    r  rY  r  Nc                 S   s   g | ]}|  qS r\   r  r   r  r\   r\   r]   r     r   z!subresultants.<locals>.<listcomp>)rd   r,  r  r:   r;   rY  r  	rW   rX   rQ   rr   r   r   rs   r  rY   r\   r\   r]   rY    s    &"
rY  Fr[  c             
   O   s   t |dg z&t| |fg|R i |\\}}}W n0 tyd } ztdd|W Y d}~n
d}~0 0 |r~|j||d\}	}
n
||}	|js|r|	 dd |
D fS |	 S |r|	|
fS |	S dS )z
    Compute resultant of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import resultant
    >>> from sympy.abc import x

    >>> resultant(x**2 + 1, x**2 - 1)
    4

    r  rZ  r  Nr[  c                 S   s   g | ]}|  qS r\   r  r3  r\   r\   r]   r   A  r   zresultant.<locals>.<listcomp>)rd   r,  r  r:   r;   rZ  r  rU   )rW   rX   r\  rQ   rr   r   r   rs   r  rY   r"  r\   r\   r]   rZ  $  s    &"
rZ  c              
   O   s|   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | }|jst| S |S dS )z
    Compute discriminant of ``f``.

    Examples
    ========

    >>> from sympy import discriminant
    >>> from sympy.abc import x

    >>> discriminant(x**2 + 2*x + 3)
    -8

    r  r]  ru   N)rd   r,  r  r:   r;   r]  r  rU   rW   rQ   rr   r   rs   r  rY   r\   r\   r]   r]  I  s    "r]  c                 O   s  t |dg z&t| |fg|R i |\\}}}W n ty } z|t|j\}\}	}
z||	|
\}}}W n ty   tdd|Y n*0 |	||	||	|fW  Y d}~S W Y d}~n
d}~0 0 ||\}}}|j
s| | | fS |||fS dS )a  
    Compute GCD and cofactors of ``f`` and ``g``.

    Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
    ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
    of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import cofactors
    >>> from sympy.abc import x

    >>> cofactors(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    r  ra  r  N)rd   r,  r  r:   r&   r  ra  rf   r;   r   r  rU   )rW   rX   rQ   rr   r   r   rs   r  r   rF  rG  rT  rb  rc  r\   r\   r]   ra  g  s    &>ra  c              
      s  t | } fdd}|| }|dur*|S tdg zt| gR i \}}t| dkrtdd | D r| d   fd	d
| dd D }tdd |D rd}|D ]}	t||	 d }qt | W S W nZ t	y0 }
 z@||
j
}|dur|W  Y d}
~
S tdt| |
W Y d}
~
n
d}
~
0 0 |sR|jsFtjS td|dS |d |dd  }}|D ]}||}|jrl qql|js| S |S dS )z
    Compute GCD of a list of polynomials.

    Examples
    ========

    >>> from sympy import gcd_list
    >>> from sympy.abc import x

    >>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
    x - 1

    c                    sl   sh sht | \}}|s|jS |jrh|d |dd   }}|D ]}|||}||r> q^q>||S d S Nr   ru   )r&   r   r  rd  r  r   seqr   numbersrY   numberrr   rQ   r\   r]   try_non_polynomial_gcd  s    

z(gcd_list.<locals>.try_non_polynomial_gcdNr  ru   c                 s   s   | ]}|j o|jV  qd S rz   is_algebraicis_irrationalr   r   r\   r\   r]   	<genexpr>  r   zgcd_list.<locals>.<genexpr>r0  c                    s   g | ]} |   qS r\   ratsimpr@  rF  r\   r]   r     r   zgcd_list.<locals>.<listcomp>c                 s   s   | ]}|j V  qd S rz   is_rationalr   frcr\   r\   r]   rA    r   r   gcd_listr   )r    rd   r,  r  rw   rz  re  as_numer_denomr  r:   r  r;   r  r   r)  rO   rd  r  rU   )r8  rQ   rr   r<  rY   r  rs   lstlcrH  r  r   r\   rF  rr   rQ   r]   rI    sB    

&

rI  c                 O   sf  t | dr2|dur|f| }t| g|R i |S |du rBtdt|dg zxt| |fg|R i |\\}}}tt| |f\}}|jr|j	r|jr|j	r|| 
 }	|	jrt||	 d  W S W nz tyB }
 z`t|
j\}\}}z ||||W W  Y d}
~
S  ty,   tdd|
Y n0 W Y d}
~
n
d}
~
0 0 ||}|js^| S |S dS )z
    Compute GCD of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import gcd
    >>> from sympy.abc import x

    >>> gcd(x**2 - 1, x**2 - 3*x + 2)
    x - 1

    __iter__Nz2gcd() takes 2 arguments or a sequence of argumentsr  r   rd  r  )r   rI  r+  rd   r,  r  r   r    r>  r?  rC  rF  r  rJ  r:   r&   r  r   rd  rf   r;   r  rU   rW   rX   rQ   rr   r   r   rs   rF  rG  rH  r  r   rY   r\   r\   r]   rd    s0    

" (
rd  c              
      s  t | } tt dfdd}|| }|dur4|S tdg zt| gR i \}}t| dkrtdd | D r| d	   fd
d| dd	 D }tdd |D rd}|D ]}	t||		 d }q | W S W nZ t
y6 }
 z@||
j}|dur|W  Y d}
~
S tdt| |
W Y d}
~
n
d}
~
0 0 |sX|jsLtjS td|dS |d |dd  }}|D ]}||}qr|js| S |S dS )z
    Compute LCM of a list of polynomials.

    Examples
    ========

    >>> from sympy import lcm_list
    >>> from sympy.abc import x

    >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
    x**5 - x**4 - 2*x**3 - x**2 + x + 2

    )returnc                    sd   s` s`t | \}}|s$||jS |jr`|d |dd   }}|D ]}|||}qD||S d S r6  )r&   r   r   r  re  r7  r;  r\   r]   try_non_polynomial_lcm*  s    
z(lcm_list.<locals>.try_non_polynomial_lcmNr  ru   c                 s   s   | ]}|j o|jV  qd S rz   r=  r@  r\   r\   r]   rA  E  r   zlcm_list.<locals>.<genexpr>r0  c                    s   g | ]} |   qS r\   rB  r@  rD  r\   r]   r   G  r   zlcm_list.<locals>.<listcomp>c                 s   s   | ]}|j V  qd S rz   rE  rG  r\   r\   r]   rA  H  r   lcm_listr   r   )r    r   r   rd   r,  r  rw   rz  re  rJ  r:   r  r;   r  r   rB  rO   rU   )r8  rQ   rr   rQ  rY   r  rs   rK  rL  rH  r  r   r\   rM  r]   rR    s>    

&rR  c                 O   sb  t | dr2|dur|f| }t| g|R i |S |du rBtdt|dg ztt| |fg|R i |\\}}}tt| |f\}}|jr|j	r|jr|j	r|| 
 }	|	jr||	 d  W S W nz ty> }
 z`t|
j\}\}}z ||||W W  Y d}
~
S  ty(   tdd|
Y n0 W Y d}
~
n
d}
~
0 0 ||}|jsZ| S |S dS )z
    Compute LCM of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import lcm
    >>> from sympy.abc import x

    >>> lcm(x**2 - 1, x**2 - 3*x + 2)
    x**3 - 2*x**2 - x + 2

    rN  Nz2lcm() takes 2 arguments or a sequence of argumentsr  ru   re  r  )r   rR  r+  rd   r,  r  r   r    r>  r?  rC  rF  rJ  r:   r&   r  r   re  rf   r;   r  rU   rO  r\   r\   r]   re  g  s0    

" (
re  c              
      s  t | }t| tr2t fdd| j| jfD  S t| trJtd| f t| trZ| jr^|S  	ddr| j
 fdd| jD  } d d d< t|gR i  S  d	d
}t dg zt| gR i  \}}W n, ty } z|jW  Y d}~S d}~0 0 | \}	} |jjrd|jjrD| jd
d\}
} |  \}} |jjrj||
 }ntj}tdd t| j|	D  }|dkrtj}|dkr|S |rt|||   S t||  dd \}} t|||  ddS )az  
    Remove GCD of terms from ``f``.

    If the ``deep`` flag is True, then the arguments of ``f`` will have
    terms_gcd applied to them.

    If a fraction is factored out of ``f`` and ``f`` is an Add, then
    an unevaluated Mul will be returned so that automatic simplification
    does not redistribute it. The hint ``clear``, when set to False, can be
    used to prevent such factoring when all coefficients are not fractions.

    Examples
    ========

    >>> from sympy import terms_gcd, cos
    >>> from sympy.abc import x, y
    >>> terms_gcd(x**6*y**2 + x**3*y, x, y)
    x**3*y*(x**3*y + 1)

    The default action of polys routines is to expand the expression
    given to them. terms_gcd follows this behavior:

    >>> terms_gcd((3+3*x)*(x+x*y))
    3*x*(x*y + x + y + 1)

    If this is not desired then the hint ``expand`` can be set to False.
    In this case the expression will be treated as though it were comprised
    of one or more terms:

    >>> terms_gcd((3+3*x)*(x+x*y), expand=False)
    (3*x + 3)*(x*y + x)

    In order to traverse factors of a Mul or the arguments of other
    functions, the ``deep`` hint can be used:

    >>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True)
    3*x*(x + 1)*(y + 1)
    >>> terms_gcd(cos(x + x*y), deep=True)
    cos(x*(y + 1))

    Rationals are factored out by default:

    >>> terms_gcd(x + y/2)
    (2*x + y)/2

    Only the y-term had a coefficient that was a fraction; if one
    does not want to factor out the 1/2 in cases like this, the
    flag ``clear`` can be set to False:

    >>> terms_gcd(x + y/2, clear=False)
    x + y/2
    >>> terms_gcd(x*y/2 + y**2, clear=False)
    y*(x/2 + y)

    The ``clear`` flag is ignored if all coefficients are fractions:

    >>> terms_gcd(x/3 + y/2, clear=False)
    (2*x + 3*y)/6

    See Also
    ========
    sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms

    c                 3   s$   | ]}t |gR i  V  qd S rz   r  )r   r-  r;  r\   r]   rA    r   zterms_gcd.<locals>.<genexpr>z5Inequalities cannot be used with terms_gcd. Found: %sdeepFc                    s"   g | ]}t |gR i  qS r\   rS  )r   rF  r;  r\   r]   r     r   zterms_gcd.<locals>.<listcomp>r  clearTr  NrE  c                 S   s   g | ]\}}|| qS r\   r\   )r   r   r   r\   r\   r]   r     r   ru   )rU  ) r    rN   r   lhsrhsr   r+  r   is_AtomrK  r[   rr   popr  rd   r,  r  r:   r~   r   r  r  rA  rk  r   rB  r   r   rQ   r   rU   as_coeff_Mul)rW   rQ   rr   r  ry   rU  r   rs   r  r   denomr   termr\   r;  r]   r    sF    C
 







r  c              
   O   s   t |ddg zt| g|R i |\}}W n0 ty^ } ztdd|W Y d}~n
d}~0 0 |t|}|js|| S |S dS )z
    Reduce ``f`` modulo a constant ``p``.

    Examples
    ========

    >>> from sympy import trunc
    >>> from sympy.abc import x

    >>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
    -x**3 - x + 1

    r   r  rf  ru   N)	rd   r,  r  r:   r;   rf  r    r  rU   )rW   rg  rQ   rr   r   rs   r  rY   r\   r\   r]   rf    s    "rf  c              
   O   s   t |ddg zt| g|R i |\}}W n0 ty^ } ztdd|W Y d}~n
d}~0 0 |j|jd}|js|| S |S dS )z
    Divide all coefficients of ``f`` by ``LC(f)``.

    Examples
    ========

    >>> from sympy import monic
    >>> from sympy.abc import x

    >>> monic(3*x**2 + 4*x + 2)
    x**2 + 4*x/3 + 2/3

    r   r  rh  ru   Nr2  )	rd   r,  r  r:   r;   rh  r   r  rU   r5  r\   r\   r]   rh  .  s    "rh  c              
   O   sf   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | S )z
    Compute GCD of coefficients of ``f``.

    Examples
    ========

    >>> from sympy import content
    >>> from sympy.abc import x

    >>> content(6*x**2 + 8*x + 12)
    2

    r  rj  ru   N)rd   r,  r  r:   r;   rj  r.  r\   r\   r]   rj  L  s    "rj  c              
   O   s   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | \}}|js||| fS ||fS dS )a  
    Compute content and the primitive form of ``f``.

    Examples
    ========

    >>> from sympy.polys.polytools import primitive
    >>> from sympy.abc import x

    >>> primitive(6*x**2 + 8*x + 12)
    (2, 3*x**2 + 4*x + 6)

    >>> eq = (2 + 2*x)*x + 2

    Expansion is performed by default:

    >>> primitive(eq)
    (2, x**2 + x + 1)

    Set ``expand`` to False to shut this off. Note that the
    extraction will not be recursive; use the as_content_primitive method
    for recursive, non-destructive Rational extraction.

    >>> primitive(eq, expand=False)
    (1, x*(2*x + 2) + 2)

    >>> eq.as_content_primitive()
    (2, x*(x + 1) + 1)

    r  rk  ru   N)rd   r,  r  r:   r;   rk  r  rU   )rW   rQ   rr   r   rs   r  rl  rY   r\   r\   r]   rk  e  s     "rk  c           	   
   O   s   t |dg z&t| |fg|R i |\\}}}W n0 tyd } ztdd|W Y d}~n
d}~0 0 ||}|js~| S |S dS )z
    Compute functional composition ``f(g)``.

    Examples
    ========

    >>> from sympy import compose
    >>> from sympy.abc import x

    >>> compose(x**2 + x, x - 1)
    x**2 - x

    r  rm  r  N)rd   r,  r  r:   r;   rm  r  rU   r4  r\   r\   r]   rm    s    &"
rm  c              
   O   s   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | }|jszdd |D S |S dS )z
    Compute functional decomposition of ``f``.

    Examples
    ========

    >>> from sympy import decompose
    >>> from sympy.abc import x

    >>> decompose(x**4 + 2*x**3 - x - 1)
    [x**2 - x - 1, x**2 + x]

    r  rn  ru   Nc                 S   s   g | ]}|  qS r\   r  r3  r\   r\   r]   r     r   zdecompose.<locals>.<listcomp>)rd   r,  r  r:   r;   rn  r  r5  r\   r\   r]   rn    s    "rn  c              
   O   s   t |ddg zt| g|R i |\}}W n0 ty^ } ztdd|W Y d}~n
d}~0 0 |j|jd}|jsdd |D S |S dS )	z
    Compute Sturm sequence of ``f``.

    Examples
    ========

    >>> from sympy import sturm
    >>> from sympy.abc import x

    >>> sturm(x**3 - 2*x**2 + x - 3)
    [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4]

    r   r  rr  ru   Nr2  c                 S   s   g | ]}|  qS r\   r  r3  r\   r\   r]   r     r   zsturm.<locals>.<listcomp>)rd   r,  r  r:   r;   rr  r   r  r5  r\   r\   r]   rr    s    "rr  c              
   O   s   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | }|jszdd |D S |S dS )a&  
    Compute a list of greatest factorial factors of ``f``.

    Note that the input to ff() and rf() should be Poly instances to use the
    definitions here.

    Examples
    ========

    >>> from sympy import gff_list, ff, Poly
    >>> from sympy.abc import x

    >>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x)

    >>> gff_list(f)
    [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]

    >>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)) == f
    True

    >>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 -         1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x)

    >>> gff_list(f)
    [(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)]

    >>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f
    True

    r  rs  ru   Nc                 S   s   g | ]\}}|  |fqS r\   r  ru  r\   r\   r]   r     r   zgff_list.<locals>.<listcomp>)rd   r,  r  r:   r;   rs  r  )rW   rQ   rr   r   rs   r  r{  r\   r\   r]   rs    s     "rs  c                 O   s   t ddS )z3Compute greatest factorial factorization of ``f``. zsymbolic falling factorialNr6  rW   rQ   rr   r\   r\   r]   gff  s    r^  c           	   
   O   s   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | \}}}|jst|| | fS t|||fS dS )a  
    Compute square-free norm of ``f``.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
    ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
    where ``a`` is the algebraic extension of the ground domain.

    Examples
    ========

    >>> from sympy import sqf_norm, sqrt
    >>> from sympy.abc import x

    >>> sqf_norm(x**2 + 1, extension=[sqrt(3)])
    (1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)

    r  rw  ru   N)	rd   r,  r  r:   r;   rw  r  r   rU   )	rW   rQ   rr   r   rs   r  r-  rX   r  r\   r\   r]   rw  "  s    "rw  c              
   O   s|   t |dg zt| g|R i |\}}W n0 ty\ } ztdd|W Y d}~n
d}~0 0 | }|jst| S |S dS )z
    Compute square-free part of ``f``.

    Examples
    ========

    >>> from sympy import sqf_part
    >>> from sympy.abc import x

    >>> sqf_part(x**3 - 3*x - 2)
    x**2 - x - 2

    r  rx  ru   N)rd   r,  r  r:   r;   rx  r  rU   r5  r\   r\   r]   rx  D  s    "rx  c                 C   s&   |dkrdd }ndd }t | |dS )z&Sort a list of ``(expr, exp)`` pairs. r  c                 S   s.   | \}}|j j }|t|t|jt|j|fS rz   ra   rw   rQ   rh   r   rx   r   expra   r\   r\   r]   r  e  s    z_sorted_factors.<locals>.keyc                 S   s.   | \}}|j j }t|t|j|t|j|fS rz   r_  r`  r\   r\   r]   r  j  s    r  )r  )r{  methodr  r\   r\   r]   _sorted_factorsb  s    
rc  c                 C   s   t dd | D  S )z*Multiply a list of ``(expr, exp)`` pairs. c                 S   s   g | ]\}}|  | qS r\   r  r   rW   r  r\   r\   r]   r   t  r   z$_factors_product.<locals>.<listcomp>)r   r{  r\   r\   r]   _factors_productr  s    rf  c                    s  t jg  }dd t| D }|D ]}|jsBt|trNt|rN||9 }q$nV|jr|j	t j
kr|j\} |jr jr||9 }q$|jr| f q$n|t j } zt||\}}W n4 ty }	 z|	j f W Y d}	~	q$d}	~	0 0 t||d }
|
 \}}|t jurN jr&||  9 }n(|jr>| f n||t jf  t ju rf| q$ jr fdd|D  q$g }|D ]8\}}| jr||  f n|||f qt| f q$|dkrfdddd	 D D |fS )
z.Helper function for :func:`_symbolic_factor`. c                 S   s"   g | ]}t |d r| n|qS )_eval_factor)r   rg  r   r   r\   r\   r]   r   {  s   z)_symbolic_factor_list.<locals>.<listcomp>N_listc                    s   g | ]\}}||  fqS r\   r\   rd  )ra  r\   r]   r     r   r  c                    s(   g | ]  t t fd dD  fqS )c                 3   s   | ]\}}| kr|V  qd S rz   r\   )r   rW   r   r  r\   r]   rA    r   z3_symbolic_factor_list.<locals>.<listcomp>.<genexpr>)r   r   )r   re  rj  r]   r     s   c                 S   s   h | ]\}}|qS r\   r\   )r   r   r   r\   r\   r]   	<setcomp>  r   z(_symbolic_factor_list.<locals>.<setcomp>)r   rB  r   	make_argsr(  rN   r   r   is_PowbaseExp1rr   r   r  r:   r~   rT   r  is_positiver"  
is_integerrU   rf  )r~   rs   rb  r   rr   argrn  r   r   r  r[   _coeffZ_factorsr  rW   r  r\   )ra  r{  r]   _symbolic_factor_listw  sX    

&


rt  c                    s   t | trFt| dr|  S tt| d d \}}t|t|S t| drl| j fdd| j	D  S t| dr| 
 fdd| D S | S d	S )
z%Helper function for :func:`_factor`. rg  fraction)ru  rr   c                    s   g | ]}t | qS r\   _symbolic_factorr   rr  rb  rs   r\   r]   r     r   z$_symbolic_factor.<locals>.<listcomp>rN  c                    s   g | ]}t | qS r\   rv  rx  ry  r\   r]   r     r   N)rN   r   r   rg  rt  rC   r   rf  r[   rr   r   )r~   rs   rb  r   r{  r\   ry  r]   rw    s    



rw  c                 C   sP  t |ddg t ||}t| } t| ttfr@t| trJ| d }}nt|  \}}t	|||\}}t	|||\}	}
|
r|j
std|  |tdd}||
fD ]:}t|D ],\}\}}|jst||\}}||f||< qqt||}t|
|}
|jsdd |D }d	d |
D }
||	 }|j
s4||fS |||
fS ntd|  d
S )z>Helper function for :func:`sqf_list` and :func:`factor_list`. fracr  ru   za polynomial expected, got %sT)r  c                 S   s   g | ]\}}|  |fqS r\   r  rd  r\   r\   r]   r     r   z(_generic_factor_list.<locals>.<listcomp>c                 S   s   g | ]\}}|  |fqS r\   r  rd  r\   r\   r]   r     r   N)rd   r,  re   r    rN   r   rO   rC   rJ  rt  rz  r7   cloneri   r   rm   r  rc  r  )r~   rQ   rr   rb  rs   numerr[  r  fpr  fqZ_optr{  r   rW   r  r   r   r\   r\   r]   _generic_factor_list  s6    



r  c                 C   s<   | dd}t|g  t||}||d< tt| ||S )z4Helper function for :func:`sqf` and :func:`factor`. ru  T)rY  rd   r,  re   rw  r    )r~   rQ   rr   rb  ru  rs   r\   r\   r]   _generic_factor  s
    r  c                    s   ddl m  d fdd	}d fdd	}dd	 }|  jr|| r|  }|| |}|rp|d |d
 d|d fS || |}|rdd|d |d
 fS dS )a!  
    try to transform a polynomial to have rational coefficients

    try to find a transformation ``x = alpha*y``

    ``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with
    rational coefficients, ``lc`` the leading coefficient.

    If this fails, try ``x = y + beta``
    ``f(x) = g(y)``

    Returns ``None`` if ``g`` not found;
    ``(lc, alpha, None, g)`` in case of rescaling
    ``(None, None, beta, g)`` in case of translation

    Notes
    =====

    Currently it transforms only polynomials without roots larger than 2.

    Examples
    ========

    >>> from sympy import sqrt, Poly, simplify
    >>> from sympy.polys.polytools import to_rational_coeffs
    >>> from sympy.abc import x
    >>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX')
    >>> lc, r, _, g = to_rational_coeffs(p)
    >>> lc, r
    (7 + 5*sqrt(2), 2 - 2*sqrt(2))
    >>> g
    Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ')
    >>> r1 = simplify(1/r)
    >>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p
    True

    r   simplifyNc                    s@  t | jdkr| jd js"d| fS |  }|  }|p<| }| dd } fdd|D }t |dkr<|d r< |d |d  }g }tt |D ]2} || ||d   }|js q<|	| q d| }	| jd }
|
| g}td|d D ]"}|	||d  |
||    qt
| } t| } ||	| fS dS )a$  
        try rescaling ``x -> alpha*x`` to convert f to a polynomial
        with rational coefficients.
        Returns ``alpha, f``; if the rescaling is successful,
        ``alpha`` is the rescaling factor, and ``f`` is the rescaled
        polynomial; else ``alpha`` is ``None``.
        ru   r   Nc                    s   g | ]} |qS r\   r\   )r   coeffxr  r\   r]   r   +  r   z<to_rational_coeffs.<locals>._try_rescale.<locals>.<listcomp>r0  )rw   rQ   rX  r&  r.  rh  r   r   rF  r   r	   rO   )rW   f1r   rL  r   Z
rescale1_xZcoeffs1r   r  Z	rescale_xr   r  r  r\   r]   _try_rescale  s0    

 
z(to_rational_coeffs.<locals>._try_rescalec           	         s   t | jdkr| jd js"d| fS |  }|p4| }| dd } |d }|jr|jst|j	dd dd\}}|j
|  | }||}||fS dS )a+  
        try translating ``x -> x + alpha`` to convert f to a polynomial
        with rational coefficients.
        Returns ``alpha, f``; if the translating is successful,
        ``alpha`` is the translating factor, and ``f`` is the shifted
        polynomial; else ``alpha`` is ``None``.
        ru   r   Nc                 S   s
   | j du S NTrE  )zr\   r\   r]   r  O  r   z<to_rational_coeffs.<locals>._try_translate.<locals>.<lambda>Tbinary)rw   rQ   rX  r&  rh  r   is_AddrF  rJ   rr   r[   ro  )	rW   r  r   r   r   ratZnonratalphaf2r  r\   r]   _try_translate?  s    

z*to_rational_coeffs.<locals>._try_translatec                 S   sp   |   }d}|D ]Z}t|D ]J}t|j}dd | D }|sDqt|dkrTd}t|dkr  dS qq|S )zS
        Return True if ``f`` is a sum with square roots but no other root
        Fc                 S   s,   g | ]$\}}|j r|jr|jd kr|jqS )r  )r   is_Rationalr  )r   rG  Zwxr\   r\   r]   r   ^  s   zAto_rational_coeffs.<locals>._has_square_roots.<locals>.<listcomp>r  T)r   r	   rl  r   r{  r   minmax)rg  r   Zhas_sqr   r   rW   r  r\   r\   r]   _has_square_rootsU  s    
z-to_rational_coeffs.<locals>._has_square_rootsru   r  )N)N)sympy.simplify.simplifyr  r   r   rh  )rW   r  r  r  r  r  r\   r  r]   to_rational_coeffs  s    &"

r  c              	   C   s  ddl m} t| |dd}| }t|}|s2dS |\}}}}	t|	 }
|r||
d | ||  }|d| }g }|
dd d D ],}|||d ||| i|d f qnF|
d }g }|
dd d D ](}||d ||| i|d f q||fS )a  
    helper function to factor polynomial using to_rational_coeffs

    Examples
    ========

    >>> from sympy.polys.polytools import _torational_factor_list
    >>> from sympy.abc import x
    >>> from sympy import sqrt, expand, Mul
    >>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
    >>> factors = _torational_factor_list(p, x); factors
    (-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)])
    >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
    True
    >>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)}))
    >>> factors = _torational_factor_list(p, x); factors
    (1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)])
    >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
    True

    r   r  EXr   Nru   )	r  r  rO   r&  r  r}  rU   r   r   )rg  r   r  p1r   resrL  r  rV  rX   r{  r   r1rF  r  r\   r\   r]   _torational_factor_listt  s&    ,&r  c                 O   s   t | ||ddS )z
    Compute a list of square-free factors of ``f``.

    Examples
    ========

    >>> from sympy import sqf_list
    >>> from sympy.abc import x

    >>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
    (2, [(x + 1, 2), (x + 2, 3)])

    r  rb  r  r]  r\   r\   r]   ry    s    ry  c                 O   s   t | ||ddS )z
    Compute square-free factorization of ``f``.

    Examples
    ========

    >>> from sympy import sqf
    >>> from sympy.abc import x

    >>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
    2*(x + 1)**2*(x + 2)**3

    r  r  )r  r]  r\   r\   r]   r    s    r  c                 O   s   t | ||ddS )a  
    Compute a list of irreducible factors of ``f``.

    Examples
    ========

    >>> from sympy import factor_list
    >>> from sympy.abc import x, y

    >>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
    (2, [(x + y, 1), (x**2 + 1, 2)])

    r  r  r  r]  r\   r\   r]   r}    s    r}  )rT  c          
   
      s   t | } |rz fdd}t| |} i }| tt}|D ]6}t|gR i  }|js^|jr8||kr8|||< q8| |S zt	|  ddW S  t
y }	 z.| jst| W  Y d}	~	S t
|	W Y d}	~	n
d}	~	0 0 dS )a  
    Compute the factorization of expression, ``f``, into irreducibles. (To
    factor an integer into primes, use ``factorint``.)

    There two modes implemented: symbolic and formal. If ``f`` is not an
    instance of :class:`Poly` and generators are not specified, then the
    former mode is used. Otherwise, the formal mode is used.

    In symbolic mode, :func:`factor` will traverse the expression tree and
    factor its components without any prior expansion, unless an instance
    of :class:`~.Add` is encountered (in this case formal factorization is
    used). This way :func:`factor` can handle large or symbolic exponents.

    By default, the factorization is computed over the rationals. To factor
    over other domain, e.g. an algebraic or finite field, use appropriate
    options: ``extension``, ``modulus`` or ``domain``.

    Examples
    ========

    >>> from sympy import factor, sqrt, exp
    >>> from sympy.abc import x, y

    >>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
    2*(x + y)*(x**2 + 1)**2

    >>> factor(x**2 + 1)
    x**2 + 1
    >>> factor(x**2 + 1, modulus=2)
    (x + 1)**2
    >>> factor(x**2 + 1, gaussian=True)
    (x - I)*(x + I)

    >>> factor(x**2 - 2, extension=sqrt(2))
    (x - sqrt(2))*(x + sqrt(2))

    >>> factor((x**2 - 1)/(x**2 + 4*x + 4))
    (x - 1)*(x + 1)/(x + 2)**2
    >>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1))
    (x + 2)**20000000*(x**2 + 1)

    By default, factor deals with an expression as a whole:

    >>> eq = 2**(x**2 + 2*x + 1)
    >>> factor(eq)
    2**(x**2 + 2*x + 1)

    If the ``deep`` flag is True then subexpressions will
    be factored:

    >>> factor(eq, deep=True)
    2**((x + 1)**2)

    If the ``fraction`` flag is False then rational expressions
    will not be combined. By default it is True.

    >>> factor(5*x + 3*exp(2 - 7*x), deep=True)
    (5*x*exp(7*x) + 3*exp(2))*exp(-7*x)
    >>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False)
    5*x + 3*exp(2)*exp(-7*x)

    See Also
    ========
    sympy.ntheory.factor_.factorint

    c                    s*   t | gR i  }|js"|jr&|S | S )zS
            Factor, but avoid changing the expression when unable to.
            )r  is_Mulrm  )r~   r  r;  r\   r]   _try_factor  s    zfactor.<locals>._try_factorr  r  N)r    r#   atomsr   r	   r  r  rm  xreplacer  r7   r  r   )
rW   rT  rQ   rr   r  ZpartialsZmuladdrg  r  msgr\   r;  r]   r    s"    D	


r  c              	   C   s2  t | dsDzt| } W n ty,   g  Y S 0 | j||||||dS t| dd\}}	t|	jdkrftt|D ]\}
}|j	j	||
< qn|dur|	j
|}|dkrtd|dur|	j
|}|dur|	j
|}t||	j
|||||d	}g }|D ]8\\}}}|	j
||	j
| }}|||f|f q|S dS )
a/  
    Compute isolating intervals for roots of ``f``.

    Examples
    ========

    >>> from sympy import intervals
    >>> from sympy.abc import x

    >>> intervals(x**2 - 3)
    [((-2, -1), 1), ((1, 2), 1)]
    >>> intervals(x**2 - 3, eps=1e-2)
    [((-26/15, -19/11), 1), ((19/11, 26/15), 1)]

    rN  r  r(   r   ru   Nr   r  )r  r  r  r  r  )r   rO   r6   r  r  rw   rQ   r8   r   ra   r   r   r   rD   r   r   )r   rz  r  r  r  r  r  r  r  rs   r   r   r  rY   r-  rV  r   r\   r\   r]   r  9  s6    


r  c                 C   s\   z&t | }t| t s$|jjs$tdW n tyD   td|  Y n0 |j||||||dS )z
    Refine an isolating interval of a root to the given precision.

    Examples
    ========

    >>> from sympy import refine_root
    >>> from sympy.abc import x

    >>> refine_root(x**2 - 3, 1, 2, eps=1e-2)
    (19/11, 26/15)

    generator must be a Symbolz,Cannot refine a root of %s, not a polynomial)r  r  r  r  )rO   rN   r   	is_Symbolr7   r6   r  )rW   r-  rV  r  r  r  r  r   r\   r\   r]   r  q  s    
r  c                 C   sX   z*t | dd}t| t s(|jjs(tdW n tyH   td|  Y n0 |j||dS )a  
    Return the number of roots of ``f`` in ``[inf, sup]`` interval.

    If one of ``inf`` or ``sup`` is complex, it will return the number of roots
    in the complex rectangle with corners at ``inf`` and ``sup``.

    Examples
    ========

    >>> from sympy import count_roots, I
    >>> from sympy.abc import x

    >>> count_roots(x**4 - 4, -3, 3)
    2
    >>> count_roots(x**4 - 4, 0, 1 + 3*I)
    1

    Fgreedyr  z*Cannot count roots of %s, not a polynomialr  )rO   rN   r   r  r7   r6   r  )rW   r  r  r   r\   r\   r]   r    s    r  Tc                 C   sV   z*t | dd}t| t s(|jjs(tdW n tyH   td|  Y n0 |j|dS )z
    Return a list of real roots with multiplicities of ``f``.

    Examples
    ========

    >>> from sympy import real_roots
    >>> from sympy.abc import x

    >>> real_roots(2*x**3 - 7*x**2 + 4*x + 4)
    [-1/2, 2, 2]
    Fr  r  z1Cannot compute real roots of %s, not a polynomialr  )rO   rN   r   r  r7   r6   r  )rW   r  r   r\   r\   r]   r    s    
r  r  r  c                 C   sZ   z*t | dd}t| t s(|jjs(tdW n tyH   td|  Y n0 |j|||dS )aL  
    Compute numerical approximations of roots of ``f``.

    Examples
    ========

    >>> from sympy import nroots
    >>> from sympy.abc import x

    >>> nroots(x**2 - 3, n=15)
    [-1.73205080756888, 1.73205080756888]
    >>> nroots(x**2 - 3, n=30)
    [-1.73205080756887729352744634151, 1.73205080756887729352744634151]

    Fr  r  z6Cannot compute numerical roots of %s, not a polynomial)r   r  r  )rO   rN   r   r  r7   r6   r  )rW   r   r  r  r   r\   r\   r]   r    s    
r  c              
   O   s~   t |g  z8t| g|R i |\}}t| tsB|jjsBtdW n0 tyt } zt	dd|W Y d}~n
d}~0 0 |
 S )z
    Compute roots of ``f`` by factorization in the ground domain.

    Examples
    ========

    >>> from sympy import ground_roots
    >>> from sympy.abc import x

    >>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2)
    {0: 2, 1: 2}

    r  r  ru   N)rd   r,  r  rN   rO   r   r  r7   r:   r;   r  r.  r\   r\   r]   r    s    "r  c              
   O   s   t |g  z8t| g|R i |\}}t| tsB|jjsBtdW n0 tyt } zt	dd|W Y d}~n
d}~0 0 |
|}|js| S |S dS )a  
    Construct a polynomial with n-th powers of roots of ``f``.

    Examples
    ========

    >>> from sympy import nth_power_roots_poly, factor, roots
    >>> from sympy.abc import x

    >>> f = x**4 - x**2 + 1
    >>> g = factor(nth_power_roots_poly(f, 2))

    >>> g
    (x**2 - x + 1)**2

    >>> R_f = [ (r**2).expand() for r in roots(f) ]
    >>> R_g = roots(g).keys()

    >>> set(R_f) == set(R_g)
    True

    r  r  ru   N)rd   r,  r  rN   rO   r   r  r7   r:   r;   r  r  rU   )rW   r   rQ   rr   r   rs   r  rY   r\   r\   r]   r    s    "
r  )	_signsimpc                   sp  ddl m} ddlm} t|dg t| } |r:|| } i }d|v rR|d |d< t| tt	fs| j
szt| tszt| ts~| S t| dd} |  \}}nt| dkr| \}}t|trt|tr|j|d< |j|d	< |dd|d< | |  }}n t| t	rt| S td
|  ddlm  zj|  r8t |||fg|R i |\}	\}
}|	jst| tt	fs||  W S tj||fW S W n* ty } z| jr|  st|| js| j r t!| j" fdddd\}}dd |D }| j#t$| j#| g|R  W  Y d}~S g }t%| }t&| |D ]P}t|tt	t'frRq8z|(|t$|f |)  W n t*y   Y n0 q8| +t,|W  Y d}~S W Y d}~n
d}~0 0 d|
$| }\}}|ddrd|vr|	j-|d< t| tt	fs|| |   S | |  }}|dds>|||fS |t|g|R i |t|g|R i |fS dS )a[  
    Cancel common factors in a rational function ``f``.

    Examples
    ========

    >>> from sympy import cancel, sqrt, Symbol, together
    >>> from sympy.abc import x
    >>> A = Symbol('A', commutative=False)

    >>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1))
    (2*x + 2)/(x - 1)
    >>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A))
    sqrt(6)/2

    Note: due to automatic distribution of Rationals, a sum divided by an integer
    will appear as a sum. To recover a rational form use `together` on the result:

    >>> cancel(x/2 + 1)
    x/2 + 1
    >>> together(_)
    (x + 2)/2
    r   )signsimp)sringr  T)radicalr  rQ   r   zunexpected argument: %sr  c                    s   | j du o|   S r  )r  hasr  r  r\   r]   r  y  s    zcancel.<locals>.<lambda>r  c                 S   s   g | ]}t |qS r\   )r  rh  r\   r\   r]   r   |  r   zcancel.<locals>.<listcomp>Nru   F).r  r  sympy.polys.ringsr  rd   r,  r    rN   r   r
   r(  r   r   r   rJ  rw   rO   rQ   r   rK  rU   r   r!  r  r  r7   Zngensr  r   rB  r  r  r  rJ   rr   r[   r  r"   r*  r$   r   skiprf   r  ri   r   )rW   r  rQ   rr   r  r  rs   rg  r  r"  r   r   r  r   ncr%  poterq  r!  r\   r  r]   r  4  s~    

"

(
0

r  c              
      s  t |ddg z(t| gt| g|R i |\} W n0 tyh } ztdd|W Y d}~n
d}~0 0  j}d} jr|jr|j	s 
t| d d}dd	lm} | j j j\}	}
t|D ](\}}| jj }|	|||< q|d |d
d \}} fdd|D }tt| }|rpzdd |D |  }}W n tyd   Y n0 || }} jsdd |D | fS ||fS dS )a<  
    Reduces a polynomial ``f`` modulo a set of polynomials ``G``.

    Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
    computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
    such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r``
    is a completely reduced polynomial with respect to ``G``.

    Examples
    ========

    >>> from sympy import reduced
    >>> from sympy.abc import x, y

    >>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y])
    ([2*x, 1], x**2 + y**2 + y)

    r  r   reducedr   NFr   Txringru   c                    s   g | ]}t t| qS r\   rO   rj   ri   r   r  r   r\   r]   r     r   zreduced.<locals>.<listcomp>c                 S   s   g | ]}|  qS r\   r   r  r\   r\   r]   r     r   c                 S   s   g | ]}|  qS r\   r  r  r\   r\   r]   r     r   )rd   r,  r  rl   r:   r;   r   r   r  r  r{  ri   r  r  r  rQ   rb   r   r   ra   r   r   r  rO   rj   r   r4   r  rU   )rW   r   rQ   rr   r  r  r   r   r  _ringr   r   r   r!  r  _Q_rr\   r   r]   r    s6    ("
r  c                 O   s   t | g|R i |S )a  
    Computes the reduced Groebner basis for a set of polynomials.

    Use the ``order`` argument to set the monomial ordering that will be
    used to compute the basis. Allowed orders are ``lex``, ``grlex`` and
    ``grevlex``. If no order is specified, it defaults to ``lex``.

    For more information on Groebner bases, see the references and the docstring
    of :func:`~.solve_poly_system`.

    Examples
    ========

    Example taken from [1].

    >>> from sympy import groebner
    >>> from sympy.abc import x, y

    >>> F = [x*y - 2*y, 2*y**2 - x**2]

    >>> groebner(F, x, y, order='lex')
    GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y,
                  domain='ZZ', order='lex')
    >>> groebner(F, x, y, order='grlex')
    GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
                  domain='ZZ', order='grlex')
    >>> groebner(F, x, y, order='grevlex')
    GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
                  domain='ZZ', order='grevlex')

    By default, an improved implementation of the Buchberger algorithm is
    used. Optionally, an implementation of the F5B algorithm can be used. The
    algorithm can be set using the ``method`` flag or with the
    :func:`sympy.polys.polyconfig.setup` function.

    >>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)]

    >>> groebner(F, x, y, method='buchberger')
    GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
    >>> groebner(F, x, y, method='f5b')
    GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')

    References
    ==========

    1. [Buchberger01]_
    2. [Cox97]_

    )GroebnerBasisr   rQ   rr   r\   r\   r]   r,     s    3r,   c                 O   s   t | g|R i |jS )a[  
    Checks if the ideal generated by a Groebner basis is zero-dimensional.

    The algorithm checks if the set of monomials not divisible by the
    leading monomial of any element of ``F`` is bounded.

    References
    ==========

    David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
    Algorithms, 3rd edition, p. 230

    )r  is_zero_dimensionalr  r\   r\   r]   r    s    r  c                   @   s   e Zd ZdZdd Zedd Zedd Zedd	 Z	ed
d Z
edd Zedd Zedd Zdd Zdd Zdd Zdd Zdd Zdd Zedd Zd d! Zd(d#d$Zd%d& Zd'S ))r  z%Represents a reduced Groebner basis. c              
      s   t |ddg zt|g|R i |\} W n4 tyb } ztdt||W Y d}~n
d}~0 0 ddlm} | j j	 j
fdd|D }t| jd	} fd
d|D }| | S )z>Compute a reduced Groebner basis for a system of polynomials. r  rb  r,   Nr   )PolyRingc                    s    g | ]}|r  |j qS r\   )r   ra   r   r   r   )ringr\   r]   r   /  r   z)GroebnerBasis.__new__.<locals>.<listcomp>r  c                    s   g | ]}t | qS r\   )rO   rj   r   rX   r   r\   r]   r   2  r   )rd   r,  r  r:   r;   rw   r  r  rQ   r   rb   	_groebnerrb  _new)rq   r   rQ   rr   r  r  r  r   r\   )rs   r  r]   rt   #  s    &zGroebnerBasis.__new__c                 C   s   t | }t||_||_|S rz   )r   rt   r   _basis_options)rq   basisrd   rx   r\   r\   r]   r  6  s    

zGroebnerBasis._newc                 C   s$   dd | j D }t| t| jj fS )Nc                 s   s   | ]}|  V  qd S rz   r  )r   rg  r\   r\   r]   rA  A  r   z%GroebnerBasis.args.<locals>.<genexpr>)r  r
   r  rQ   )r}   r  r\   r\   r]   rr   ?  s    zGroebnerBasis.argsc                 C   s   dd | j D S )Nc                 S   s   g | ]}|  qS r\   r  r  r\   r\   r]   r   F  r   z'GroebnerBasis.exprs.<locals>.<listcomp>)r  r|   r\   r\   r]   r  D  s    zGroebnerBasis.exprsc                 C   s
   t | jS rz   )rl   r  r|   r\   r\   r]   r  H  s    zGroebnerBasis.polysc                 C   s   | j jS rz   )r  rQ   r|   r\   r\   r]   rQ   L  s    zGroebnerBasis.gensc                 C   s   | j jS rz   )r  r   r|   r\   r\   r]   r   P  s    zGroebnerBasis.domainc                 C   s   | j jS rz   )r  rb   r|   r\   r\   r]   rb   T  s    zGroebnerBasis.orderc                 C   s
   t | jS rz   )rw   r  r|   r\   r\   r]   __len__X  s    zGroebnerBasis.__len__c                 C   s    | j jrt| jS t| jS d S rz   )r  r  iterr  r|   r\   r\   r]   rN  [  s    
zGroebnerBasis.__iter__c                 C   s   | j jr| j}n| j}|| S rz   )r  r  r  )r}   itemr  r\   r\   r]   __getitem__a  s    zGroebnerBasis.__getitem__c                 C   s   t | jt| j fS rz   )hashr  r   r  r   r|   r\   r\   r]   r   i  s    zGroebnerBasis.__hash__c                 C   sP   t || jr$| j|jko"| j|jkS t|rH| jt|kpF| jt|kS dS d S )NF)rN   r   r  r  rI   r  rl   r  r}   r  r\   r\   r]   r   l  s
    zGroebnerBasis.__eq__c                 C   s
   | |k S rz   r\   r  r\   r\   r]   r  t  s    zGroebnerBasis.__ne__c                 C   sT   dd }t dgt| j }| jj}| jD ] }|j|d}||r*||9 }q*t|S )a{  
        Checks if the ideal generated by a Groebner basis is zero-dimensional.

        The algorithm checks if the set of monomials not divisible by the
        leading monomial of any element of ``F`` is bounded.

        References
        ==========

        David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
        Algorithms, 3rd edition, p. 230

        c                 S   s   t tt| dkS r   )sumr   r#  )monomialr\   r\   r]   
single_var  s    z5GroebnerBasis.is_zero_dimensional.<locals>.single_varr   r   )r-   rw   rQ   r  rb   r  r9  rz  )r}   r  r3  rb   r   r  r\   r\   r]   r  w  s    

z!GroebnerBasis.is_zero_dimensionalc                    s   | j   j}t|}||kr | S | js.tdt| j} j} t	|
 |d ddlm} | j j|\}}t|D ](\}	}
|
 jj }
||
||	< q|t|||} fdd|D }|jsdd |D }| _| | S )a  
        Convert a Groebner basis from one ordering to another.

        The FGLM algorithm converts reduced Groebner bases of zero-dimensional
        ideals from one ordering to another. This method is often used when it
        is infeasible to compute a Groebner basis with respect to a particular
        ordering directly.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import groebner

        >>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
        >>> G = groebner(F, x, y, order='grlex')

        >>> list(G.fglm('lex'))
        [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
        >>> list(groebner(F, x, y, order='lex'))
        [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]

        References
        ==========

        .. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
               Computation of Zero-dimensional Groebner Bases by Change of
               Ordering

        z?Cannot convert Groebner bases of ideals with positive dimension)r   rb   r   r  c                    s   g | ]}t t| qS r\   r  r  r   r\   r]   r     r   z&GroebnerBasis.fglm.<locals>.<listcomp>c                 S   s   g | ]}|j d dd qS )TrE  ru   )rA  r  r\   r\   r]   r     r   )r  rb   r.   r  rf   rl   r  r   r{  ri   r  r  r  rQ   r   r   ra   r   r   r+   r  r  )r}   rb   Z	src_orderZ	dst_orderr  r   r  r  r   r   r   r   r\   r   r]   fglm  s0    
zGroebnerBasis.fglmTc                    sR  t || j}|gt| j }| j  j}d}|rV|jrV|jsV t	|
 d d}ddlm} | j j j\}}	t|D ](\}
}| jj }||||
< q|d |dd \}} fdd	|D }t t	| }|r(zd
d	 |D |  }}W n ty   Y n0 || }} jsFdd	 |D | fS ||fS dS )a#  
        Reduces a polynomial modulo a Groebner basis.

        Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
        computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
        such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r``
        is a completely reduced polynomial with respect to ``G``.

        Examples
        ========

        >>> from sympy import groebner, expand
        >>> from sympy.abc import x, y

        >>> f = 2*x**4 - x**2 + y**3 + y**2
        >>> G = groebner([x**3 - x, y**3 - y])

        >>> G.reduce(f)
        ([2*x, 1], x**2 + y**2 + y)
        >>> Q, r = _

        >>> expand(sum(q*g for q, g in zip(Q, G)) + r)
        2*x**4 - x**2 + y**3 + y**2
        >>> _ == f
        True

        Fr   Tr   r  ru   Nc                    s   g | ]}t t| qS r\   r  r  r   r\   r]   r   
  r   z(GroebnerBasis.reduce.<locals>.<listcomp>c                 S   s   g | ]}|  qS r\   r  r  r\   r\   r]   r     r   c                 S   s   g | ]}|  qS r\   r  r  r\   r\   r]   r     r   )rO   ro   r  rl   r  r   r  r  r{  ri   r  r  r  rQ   rb   r   r   ra   r   r   r  rj   r   r4   r  rU   )r}   r~   r   r   r  r   r   r  r  r   r   r!  r  r  r  r\   r   r]   r     s2    
zGroebnerBasis.reducec                 C   s   |  |d dkS )am  
        Check if ``poly`` belongs the ideal generated by ``self``.

        Examples
        ========

        >>> from sympy import groebner
        >>> from sympy.abc import x, y

        >>> f = 2*x**3 + y**3 + 3*y
        >>> G = groebner([x**2 + y**2 - 1, x*y - 2])

        >>> G.contains(f)
        True
        >>> G.contains(f + 1)
        False

        ru   r   )r   )r}   r   r\   r\   r]   contains  s    zGroebnerBasis.containsN)T)rV   r
  r  r  rt   r  r  r  rr   r  r  rQ   r   rb   r  rN  r  r   r   r  r  r  r   r  r\   r\   r\   r]   r    s6   







B
Ar  c                    sd   t g   fdd t| } | jr>t| g|R i S dvrNdd< t |} | |S )z
    Efficiently transform an expression into a polynomial.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.abc import x

    >>> poly(x*(x**2 + x - 1)**2)
    Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')

    c           
         s  g g  }}t | D ]}g g  }}t|D ]b}|jrH| || q,|jr|jjr|jjr|jdkr| |j|	|j q,|| q,|s|| q|d }|dd  D ]}|
|}q|rt| }|jr|
|}n|
t||}|| q|st| |}	nZ|d }	|dd  D ]}|	|}	q(|rnt | }|jr\|	|}	n|	t||}	|	j|ddi S )Nr   ru   rQ   r\   )r	   rl  r   r  r   rm  rn  ra  r  r  r   r(  rO   ro   r   r   rK  )
r~   rs   r   Z
poly_termsr\  r{  Zpoly_factorsr  productrY   _polyrr   r\   r]   r  A  sJ    

zpoly.<locals>._polyr  F)rd   r,  r    rm   rO   re   r  r\   r  r]   r   0  s    4r   )r   )N)N)FNNNFFF)NNFF)NN)T)r  r  T)r  	functoolsr   r   operatorr   typingr   
sympy.corer   r   r	   r
   sympy.core.basicr   Zsympy.core.decoratorsr   Zsympy.core.exprtoolsr   r   r   Zsympy.core.evalfr   r   r   r   r   sympy.core.functionr   Zsympy.core.mulr   r   sympy.core.numbersr   r   r   sympy.core.relationalr   r   sympy.core.sortingr   sympy.core.symbolr   r   sympy.core.sympifyr    r!   sympy.core.traversalr"   r#   sympy.logic.boolalgr$   sympy.polysr%   rd   Zsympy.polys.constructorr&   Zsympy.polys.domainsr'   r(   r)   Z!sympy.polys.domains.domainelementr*   Zsympy.polys.fglmtoolsr+   Zsympy.polys.groebnertoolsr,   r  Zsympy.polys.monomialsr-   sympy.polys.orderingsr.   sympy.polys.polyclassesr/   r0   r1   sympy.polys.polyerrorsr2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   sympy.polys.polyutilsr=   r>   r?   r@   rA   rB   sympy.polys.rationaltoolsrC   Zsympy.polys.rootisolationrD   Zsympy.utilitiesrE   rF   rG   sympy.utilities.exceptionsrH   sympy.utilities.iterablesrI   rJ   r  r  Zmpmath.libmp.libhyperrK   r_   rO   r  r  r  r  r  r'  r&  r(  r'  r.  r9  r=  r  r  r  r  r  r#  r$  r%  rS  rU  rW  rY  rZ  r]  ra  rI  rd  rR  re  r  rf  rh  rj  rk  rm  rn  rr  rs  r^  rw  rx  rc  rf  rt  rw  r  r  r  r  ry  r  r}  r  r  r  r  r  r  r  r  r  r  r  r  r   r\   r\   r\   r]   <module>   s  4
 "                                d]
(
^
:
4






"
"



"
&
&
4
$

(
T3
M2
u



-



.

!
:,	,


b7 

+f
;
5
  