a
    RG5dr                     @   s   d Z ddlZddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 dd	lmZ dd
lmZ dd Zdd Zdd Zdd ZG dd dZe Zdd ZG dd deZd+ddZdd Zd,ddZdd  Zd-d"d#Zd.d%d&Zd'd( Zd)d* ZdS )/z"
Generating and counting primes.

    N)bisectcount)array)Function)S   )isprime)as_intc                 C   s   t ddg|  S )Nlr   _arrayn r   R/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/ntheory/generate.py_azeros   s    r   c                  G   s
   t d| S Nr   r   )vr   r   r   _aset   s    r   c                 C   s   t dt| |S r   )r   rangeabr   r   r   _arange   s    r   c                 C   s   ddl m} t|| S )z Wrapping ceiling in as_int will raise an error if there was a problem
        determining whether the expression was exactly an integer or not.r   )ceiling)#sympy.functions.elementary.integersr   r
   )r   r   r   r   r   _as_int_ceiling   s    r   c                   @   st   e Zd ZdZdd Zdd ZdddZd	d
 Zdd ZdddZ	dd Z
dd Zdd Zdd Zdd Zdd ZdS )Sievea  An infinite list of prime numbers, implemented as a dynamically
    growing sieve of Eratosthenes. When a lookup is requested involving
    an odd number that has not been sieved, the sieve is automatically
    extended up to that number.

    Examples
    ========

    >>> from sympy import sieve
    >>> sieve._reset() # this line for doctest only
    >>> 25 in sieve
    False
    >>> sieve._list
    array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
    c                    sl   d _ tdddddd _tdd	d	ddd
 _tdd	dddd _t fdd j j jfD shJ d S )N                     r   r      c                 3   s   | ]}t | jkV  qd S N)len_n.0iselfr   r   	<genexpr>=       z!Sieve.__init__.<locals>.<genexpr>)r*   r   _list_tlist_mlistallr.   r   r.   r   __init__8   s
    zSieve.__init__c                 C   s   ddt | j| jd | jd | jd | jd | jd dt | j| jd | jd | jd | jd | jd d	t | j| jd | jd | jd | jd | jd f S )
Nzs<%s sieve (%i): %i, %i, %i, ... %i, %i
%s sieve (%i): %i, %i, %i, ... %i, %i
%s sieve (%i): %i, %i, %i, ... %i, %i>primer   r   r    r'   totientmobius)r)   r2   r3   r4   r.   r   r   r   __repr__?   s    


zSieve.__repr__Nc                 C   sj   t dd |||fD r$d } }}|r:| jd| j | _|rP| jd| j | _|rf| jd| j | _dS )z]Reset all caches (default). To reset one or more set the
            desired keyword to True.c                 s   s   | ]}|d u V  qd S r(   r   r+   r   r   r   r0   P   r1   zSieve._reset.<locals>.<genexpr>TN)r5   r2   r*   r3   r4   )r/   r7   r9   r:   r   r   r   _resetM   s    zSieve._resetc                 C   s   t |}|| jd krdS t |d d }| | | jd d }t||d }| |D ],}| | }t|t||D ]}d||< qxqZ|  jtddd |D 7  _dS )	a  Grow the sieve to cover all primes <= n (a real number).

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve._reset() # this line for doctest only
        >>> sieve.extend(30)
        >>> sieve[10] == 29
        True
        r'   N      ?r   r   r   c                 S   s   g | ]}|r|qS r   r   )r,   xr   r   r   
<listcomp>|   r1   z Sieve.extend.<locals>.<listcomp>)intr2   extendr   
primeranger   r)   r   )r/   r   ZmaxbasebeginZnewsievep
startindexr-   r   r   r   rA   Y   s    

zSieve.extendc                 C   s4   t |}t| j|k r0| t| jd d  qdS )a  Extend to include the ith prime number.

        Parameters
        ==========

        i : integer

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve._reset() # this line for doctest only
        >>> sieve.extend_to_no(9)
        >>> sieve._list
        array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])

        Notes
        =====

        The list is extended by 50% if it is too short, so it is
        likely that it will be longer than requested.
        r'   g      ?N)r
   r)   r2   rA   r@   )r/   r-   r   r   r   extend_to_no~   s    zSieve.extend_to_noc                 c   s   |du rt |}d}ntdt |}t |}||kr8dS | | | |d }t| jd }||k r| j|d  }||k r|V  |d7 }q^dS q^dS )a(  Generate all prime numbers in the range [2, a) or [a, b).

        Examples
        ========

        >>> from sympy import sieve, prime

        All primes less than 19:

        >>> print([i for i in sieve.primerange(19)])
        [2, 3, 5, 7, 11, 13, 17]

        All primes greater than or equal to 7 and less than 19:

        >>> print([i for i in sieve.primerange(7, 19)])
        [7, 11, 13, 17]

        All primes through the 10th prime

        >>> list(sieve.primerange(prime(10) + 1))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        Nr    r   )r   maxrA   searchr)   r2   )r/   r   r   r-   ZmaxirD   r   r   r   rB      s     

zSieve.primerangec                 c   s  t dt|}t|}t| j}||kr,dS ||krRt||D ]}| j| V  q>n|  jt||7  _td|D ]T}| j| }|| d | | }t|||D ]}| j|  |8  < q||krp|V  qpt||D ]D}| j| }td| ||D ]}| j|  |8  < q||kr|V  qdS )zGenerate all totient numbers for the range [a, b).

        Examples
        ========

        >>> from sympy import sieve
        >>> print([i for i in sieve.totientrange(7, 18)])
        [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16]
        r   Nr    )rG   r   r)   r3   r   r   )r/   r   r   r   r-   tirE   jr   r   r   totientrange   s,    



zSieve.totientrangec                 c   s  t dt|}t|}t| j}||kr,dS ||krRt||D ]}| j| V  q>n|  jt|| 7  _td|D ]T}| j| }|| d | | }t|||D ]}| j|  |8  < q||krr|V  qrt||D ]D}| j| }td| ||D ]}| j|  |8  < q||kr|V  qdS )a  Generate all mobius numbers for the range [a, b).

        Parameters
        ==========

        a : integer
            First number in range

        b : integer
            First number outside of range

        Examples
        ========

        >>> from sympy import sieve
        >>> print([i for i in sieve.mobiusrange(7, 18)])
        [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1]
        r   Nr    )rG   r   r)   r4   r   r   )r/   r   r   r   r-   mirE   rJ   r   r   r   mobiusrange   s,    


zSieve.mobiusrangec                 C   sr   t |}t|}|dk r$td| || jd kr<| | t| j|}| j|d  |krb||fS ||d fS dS )a~  Return the indices i, j of the primes that bound n.

        If n is prime then i == j.

        Although n can be an expression, if ceiling cannot convert
        it to an integer then an n error will be raised.

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve.search(25)
        (9, 10)
        >>> sieve.search(23)
        (9, 9)
        r    zn should be >= 2 but got: %sr'   r   N)r   r
   
ValueErrorr2   rA   r   )r/   r   testr   r   r   r   rH     s    
zSieve.searchc              	   C   s\   zt |}|dksJ W n ttfy0   Y dS 0 |d dkrF|dkS | |\}}||kS )Nr    Fr   )r
   rN   AssertionErrorrH   )r/   r   r   r   r   r   r   __contains__1  s    zSieve.__contains__c                 c   s   t dD ]}| | V  qd S )Nr   r   )r/   r   r   r   r   __iter__<  s    zSieve.__iter__c                 C   s   t |trV| |j |jdur&|jnd}|dk r:td| j|d |jd |j S |dk rftdt|}| | | j|d  S dS )zReturn the nth prime numberNr   r   zSieve indices start at 1.)	
isinstanceslicerF   stopstart
IndexErrorr2   stepr
   )r/   r   rV   r   r   r   __getitem__@  s    

zSieve.__getitem__)NNN)N)__name__
__module____qualname____doc__r6   r;   r<   rA   rF   rB   rK   rM   rH   rQ   rR   rY   r   r   r   r   r   &   s   
%
,#,r   c                 C   s   t | }|dk rtd|ttjkr.t| S ddlm} ddlm} d}t	||||||  }||k r|| d? }|||kr|}qf|d }qft
|d }||k rt|r|d7 }|d7 }q|d S )aK   Return the nth prime, with the primes indexed as prime(1) = 2,
        prime(2) = 3, etc.... The nth prime is approximately $n\log(n)$.

        Logarithmic integral of $x$ is a pretty nice approximation for number of
        primes $\le x$, i.e.
        li(x) ~ pi(x)
        In fact, for the numbers we are concerned about( x<1e11 ),
        li(x) - pi(x) < 50000

        Also,
        li(x) > pi(x) can be safely assumed for the numbers which
        can be evaluated by this function.

        Here, we find the least integer m such that li(m) > n using binary search.
        Now pi(m-1) < li(m-1) <= n,

        We find pi(m - 1) using primepi function.

        Starting from m, we have to find n - pi(m-1) more primes.

        For the inputs this implementation can handle, we will have to test
        primality for at max about 10**5 numbers, to get our answer.

        Examples
        ========

        >>> from sympy import prime
        >>> prime(10)
        29
        >>> prime(1)
        2
        >>> prime(100000)
        1299709

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
        .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
        .. [3] https://en.wikipedia.org/wiki/Skewes%27_number
    r   z-nth must be a positive integer; prime(1) == 2r   loglir    )r
   rN   r)   siever2   &sympy.functions.elementary.exponentialr_   'sympy.functions.special.error_functionsra   r@   primepir	   )nthr   r_   ra   r   r   midZn_primesr   r   r   r7   Y  s(    1

r7   c                   @   s   e Zd ZdZedd ZdS )re   aw	   Represents the prime counting function pi(n) = the number
        of prime numbers less than or equal to n.

        Algorithm Description:

        In sieve method, we remove all multiples of prime p
        except p itself.

        Let phi(i,j) be the number of integers 2 <= k <= i
        which remain after sieving from primes less than
        or equal to j.
        Clearly, pi(n) = phi(n, sqrt(n))

        If j is not a prime,
        phi(i,j) = phi(i, j - 1)

        if j is a prime,
        We remove all numbers(except j) whose
        smallest prime factor is j.

        Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
        Now, after sieving from primes $\le j - 1$,
        a must remain
        (because x, and hence a has no prime factor $\le j - 1$)
        Clearly, there are phi(i / j, j - 1) such a
        which remain on sieving from primes $\le j - 1$

        Now, if a is a prime less than equal to j - 1,
        $x= j \times a$ has smallest prime factor = a, and
        has already been removed(by sieving from a).
        So, we do not need to remove it again.
        (Note: there will be pi(j - 1) such x)

        Thus, number of x, that will be removed are:
        phi(i / j, j - 1) - phi(j - 1, j - 1)
        (Note that pi(j - 1) = phi(j - 1, j - 1))

        $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)

        So,following recursion is used and implemented as dp:

        phi(a, b) = phi(a, b - 1), if b is not a prime
        phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime

        Clearly a is always of the form floor(n / k),
        which can take at most $2\sqrt{n}$ values.
        Two arrays arr1,arr2 are maintained
        arr1[i] = phi(i, j),
        arr2[i] = phi(n // i, j)

        Finally the answer is arr2[1]

        Examples
        ========

        >>> from sympy import primepi, prime, prevprime, isprime
        >>> primepi(25)
        9

        So there are 9 primes less than or equal to 25. Is 25 prime?

        >>> isprime(25)
        False

        It is not. So the first prime less than 25 must be the
        9th prime:

        >>> prevprime(25) == prime(9)
        True

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        prime : Return the nth prime
    c           
      C   s
  |t ju rt jS |t ju r t jS zt|}W n0 ty\   |jdksN|t ju rVtdY d S 0 |dk rlt jS |t	j
d krt t	|d S t|d }|d8 }t|d}|| |kr|d7 }q|d8 }dg|d  }dg|d  }td|d D ] }|d ||< || d ||< qtd|d D ]}|| ||d  kr@q"||d  }tdt|||  |d D ]N}|| }||kr||  || | 8  < n||  |||  | 8  < qht||| d }	t||	dD ]"}||  |||  | 8  < q֐q"t |d S )NFzn must be realr    r'   r   r=   r   )r   InfinityNegativeInfinityZeror@   	TypeErroris_realNaNrN   rb   r2   rH   rG   r   min)
clsr   limarr1arr2r-   rD   rJ   stZlim2r   r   r   eval  sL    



 
 $zprimepi.evalN)rZ   r[   r\   r]   classmethodrt   r   r   r   r   re     s   Mre   c                 C   s8  t | } t|}|dkr@| }d}t|}|d7 }||kr q<q |S | dk rLdS | dk rhdddddd|  S | tjd krt| \}}||krt|d  S t| S d| d  }|| kr| d7 } t| r| S | d	7 } n2| | dkr| d7 } t| r| S | d	7 } n|d } t| r| S | d7 } t| r(| S | d	7 } qd
S )aB   Return the ith prime greater than n.

        i must be an integer.

        Notes
        =====

        Potential primes are located at 6*j +/- 1. This
        property is used during searching.

        >>> from sympy import nextprime
        >>> [(i, nextprime(i)) for i in range(10, 15)]
        [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]
        >>> nextprime(2, ith=2) # the 2nd prime after 2
        5

        See Also
        ========

        prevprime : Return the largest prime smaller than n
        primerange : Generate all primes in a given range

    r   r    r#   r!   r"   )r    r!   r&   r"   r   r8   r   r&   N)r@   r
   	nextprimerb   r2   rH   r	   )r   Zithr-   prrJ   r   unnr   r   r   rv      sJ    



rv   c                 C   s   t | } | dk rtd| dk r4dddddd|  S | tjd krlt| \}}||krdt|d  S t| S d	| d	  }| | dkr|d } t| r| S | d
8 } n|d } t| r| S | d8 } t| r| S | d
8 } qdS )a   Return the largest prime smaller than n.

        Notes
        =====

        Potential primes are located at 6*j +/- 1. This
        property is used during searching.

        >>> from sympy import prevprime
        >>> [(i, prevprime(i)) for i in range(10, 15)]
        [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]

        See Also
        ========

        nextprime : Return the ith prime greater than n
        primerange : Generates all primes in a given range
    r!   zno preceding primes   r    r"   )r!   r&   r"   r   r#   r'   r   r   r&   N)r   rN   rb   r2   rH   r	   )r   r   rx   ry   r   r   r   	prevprimed  s.    
r{   c                 c   sx   |du rd|  } }| |krdS |t jd krBt | |E dH  dS t| d } t|}t| } | |k rn| V  qVdS qVdS )a
   Generate a list of all prime numbers in the range [2, a),
        or [a, b).

        If the range exists in the default sieve, the values will
        be returned from there; otherwise values will be returned
        but will not modify the sieve.

        Examples
        ========

        >>> from sympy import primerange, prime

        All primes less than 19:

        >>> list(primerange(19))
        [2, 3, 5, 7, 11, 13, 17]

        All primes greater than or equal to 7 and less than 19:

        >>> list(primerange(7, 19))
        [7, 11, 13, 17]

        All primes through the 10th prime

        >>> list(primerange(prime(10) + 1))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        The Sieve method, primerange, is generally faster but it will
        occupy more memory as the sieve stores values. The default
        instance of Sieve, named sieve, can be used:

        >>> from sympy import sieve
        >>> list(sieve.primerange(1, 30))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        Notes
        =====

        Some famous conjectures about the occurrence of primes in a given
        range are [1]:

        - Twin primes: though often not, the following will give 2 primes
                    an infinite number of times:
                        primerange(6*n - 1, 6*n + 2)
        - Legendre's: the following always yields at least one prime
                        primerange(n**2, (n+1)**2+1)
        - Bertrand's (proven): there is always a prime in the range
                        primerange(n, 2*n)
        - Brocard's: there are at least four primes in the range
                        primerange(prime(n)**2, prime(n+1)**2)

        The average gap between primes is log(n) [2]; the gap between
        primes can be arbitrarily large since sequences of composite
        numbers are arbitrarily large, e.g. the numbers in the sequence
        n! + 2, n! + 3 ... n! + n are all composite.

        See Also
        ========

        prime : Return the nth prime
        nextprime : Return the ith prime greater than n
        prevprime : Return the largest prime smaller than n
        randprime : Returns a random prime in a given range
        primorial : Returns the product of primes based on condition
        Sieve.primerange : return range from already computed primes
                           or extend the sieve to contain the requested
                           range.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Prime_number
        .. [2] http://primes.utm.edu/notes/gaps.html
    Nr    r'   r   )rb   r2   rB   r   rv   r   r   r   r   rB     s    K
rB   c                 C   sZ   | |krdS t t| |f\} }t| d |}t|}||krFt|}|| k rVtd|S )a$   Return a random prime number in the range [a, b).

        Bertrand's postulate assures that
        randprime(a, 2*a) will always succeed for a > 1.

        Examples
        ========

        >>> from sympy import randprime, isprime
        >>> randprime(1, 30) #doctest: +SKIP
        13
        >>> isprime(randprime(1, 30))
        True

        See Also
        ========

        primerange : Generate all primes in a given range

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate

    Nr   z&no primes exist in the specified range)mapr@   randomrandintrv   r{   rN   )r   r   r   rD   r   r   r   	randprime  s    r   Tc                 C   sp   |rt | } nt| } | dk r&tdd}|rPtd| d D ]}|t|9 }q<ntd| d D ]}||9 }q^|S )a:  
    Returns the product of the first n primes (default) or
    the primes less than or equal to n (when ``nth=False``).

    Examples
    ========

    >>> from sympy.ntheory.generate import primorial, primerange
    >>> from sympy import factorint, Mul, primefactors, sqrt
    >>> primorial(4) # the first 4 primes are 2, 3, 5, 7
    210
    >>> primorial(4, nth=False) # primes <= 4 are 2 and 3
    6
    >>> primorial(1)
    2
    >>> primorial(1, nth=False)
    1
    >>> primorial(sqrt(101), nth=False)
    210

    One can argue that the primes are infinite since if you take
    a set of primes and multiply them together (e.g. the primorial) and
    then add or subtract 1, the result cannot be divided by any of the
    original factors, hence either 1 or more new primes must divide this
    product of primes.

    In this case, the number itself is a new prime:

    >>> factorint(primorial(4) + 1)
    {211: 1}

    In this case two new primes are the factors:

    >>> factorint(primorial(4) - 1)
    {11: 1, 19: 1}

    Here, some primes smaller and larger than the primes multiplied together
    are obtained:

    >>> p = list(primerange(10, 20))
    >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
    [2, 5, 31, 149]

    See Also
    ========

    primerange : Generate all primes in a given range

    r   zprimorial argument must be >= 1r    )r
   r@   rN   r   r7   rB   )r   rf   rD   r-   r   r   r   	primorial  s    2

r   Fc           
      c   s   t |pd}d }}|| | }}d}||krv|r:||k rv|d7 }||krZ|}|d9 }d}|rd|V  | |}|d7 }q&|r||kr|rdS |dfV  dS |sd}	| }}t|D ]}| |}q||kr| |}| |}|	d7 }	q|	r|	d8 }	||	fV  dS )a  For a given iterated sequence, return a generator that gives
    the length of the iterated cycle (lambda) and the length of terms
    before the cycle begins (mu); if ``values`` is True then the
    terms of the sequence will be returned instead. The sequence is
    started with value ``x0``.

    Note: more than the first lambda + mu terms may be returned and this
    is the cost of cycle detection with Brent's method; there are, however,
    generally less terms calculated than would have been calculated if the
    proper ending point were determined, e.g. by using Floyd's method.

    >>> from sympy.ntheory.generate import cycle_length

    This will yield successive values of i <-- func(i):

        >>> def iter(func, i):
        ...     while 1:
        ...         ii = func(i)
        ...         yield ii
        ...         i = ii
        ...

    A function is defined:

        >>> func = lambda i: (i**2 + 1) % 51

    and given a seed of 4 and the mu and lambda terms calculated:

        >>> next(cycle_length(func, 4))
        (6, 2)

    We can see what is meant by looking at the output:

        >>> n = cycle_length(func, 4, values=True)
        >>> list(ni for ni in n)
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]

    There are 6 repeating values after the first 2.

    If a sequence is suspected of being longer than you might wish, ``nmax``
    can be used to exit early (and mu will be returned as None):

        >>> next(cycle_length(func, 4, nmax = 4))
        (4, None)
        >>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)]
        [17, 35, 2, 5]

    Code modified from:
        https://en.wikipedia.org/wiki/Cycle_detection.
    r   r   r    N)r@   r   )
fx0nmaxvaluespowerlamZtortoiseZharer-   mur   r   r   cycle_lengthZ  s>    4



r   c           	      C   sf  t | }|dk rtdg d}|dkr4||d  S dtjd  }}||t| d kr||d k r|| d? }|t| d |kr|}qX|}qXt|r|d8 }|S ddlm} dd	lm	} d}t
||||||  }||k r|| d? }||| d |kr|}q|d }q|t| d }||krPt|sD|d8 }|d8 }q(t|rb|d8 }|S )
a   Return the nth composite number, with the composite numbers indexed as
        composite(1) = 4, composite(2) = 6, etc....

        Examples
        ========

        >>> from sympy import composite
        >>> composite(36)
        52
        >>> composite(1)
        4
        >>> composite(17737)
        20000

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n
        prime : Return the nth prime
        compositepi : Return the number of positive composite numbers less than or equal to n
    r   z1nth must be a positive integer; composite(1) == 4)
r&   r   rz   	   
                  r   r&   r'   r   r^   r`   )r
   rN   rb   r2   re   r	   rc   r_   rd   ra   r@   )	rf   r   Zcomposite_arrr   r   rg   r_   ra   Zn_compositesr   r   r   	composite  sB    




r   c                 C   s$   t | } | dk rdS | t|  d S )ak   Return the number of positive composite numbers less than or equal to n.
        The first positive composite is 4, i.e. compositepi(4) = 1.

        Examples
        ========

        >>> from sympy import compositepi
        >>> compositepi(25)
        15
        >>> compositepi(1000)
        831

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        prime : Return the nth prime
        primepi : Return the number of primes less than or equal to n
        composite : Return the nth composite number
    r&   r   r   )r@   re   r   r   r   r   compositepi  s    r   )r   )N)T)NF)r]   r}   r   	itertoolsr   r   r   sympy.core.functionr   sympy.core.singletonr   	primetestr	   sympy.utilities.miscr
   r   r   r   r   r   rb   r7   re   rv   r{   rB   r   r   r   r   r   r   r   r   r   <module>   s4     2J}
D/
_&
B
YA