from sympy.core.function import expand_func
from sympy.core.numbers import (I, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.functions.elementary.complexes import Abs, arg, re, unpolarify
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import cosh, acosh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
from sympy.functions.elementary.trigonometric import (cos, sin, sinc, asin)
from sympy.functions.special.error_functions import (erf, erfc)
from sympy.functions.special.gamma_functions import (gamma, polygamma)
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.integrals.integrals import (Integral, integrate)
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.simplify import simplify
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
    meijerint_indefinite, _inflate_g, _create_lookup_table,
    meijerint_definite, meijerint_inversion)
from sympy.testing.pytest import slow
from sympy.core.random import (verify_numerically,
        random_complex_number as randcplx)
from sympy.abc import x, y, a, b, c, d, s, t, z


def test_rewrite_single():
    def t(expr, c, m):
        e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
        assert e is not None
        assert isinstance(e[0][0][2], meijerg)
        assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))

    def tn(expr):
        assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None

    t(x, 1, x)
    t(x**2, 1, x**2)
    t(x**2 + y*x**2, y + 1, x**2)
    tn(x**2 + x)
    tn(x**y)

    def u(expr, x):
        from sympy.core.add import Add
        r = _rewrite_single(expr, x)
        e = Add(*[res[0]*res[2] for res in r[0]]).replace(
            exp_polar, exp)  # XXX Hack?
        assert verify_numerically(e, expr, x)

    u(exp(-x)*sin(x), x)

    # The following has stopped working because hyperexpand changed slightly.
    # It is probably not worth fixing
    #u(exp(-x)*sin(x)*cos(x), x)

    # This one cannot be done numerically, since it comes out as a g-function
    # of argument 4*pi
    # NOTE This also tests a bug in inverse mellin transform (which used to
    #      turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of
    #      exp_polar).
    #u(exp(x)*sin(x), x)
    assert _rewrite_single(exp(x)*sin(x), x) == \
        ([(-sqrt(2)/(2*sqrt(pi)), 0,
           meijerg(((Rational(-1, 2), 0, Rational(1, 4), S.Half, Rational(3, 4)), (1,)),
                   ((), (Rational(-1, 2), 0)), 64*exp_polar(-4*I*pi)/x**4))], True)


def test_rewrite1():
    assert _rewrite1(x**3*meijerg([a], [b], [c], [d], x**2 + y*x**2)*5, x) == \
        (5, x**3, [(1, 0, meijerg([a], [b], [c], [d], x**2*(y + 1)))], True)


def test_meijerint_indefinite_numerically():
    def t(fac, arg):
        g = meijerg([a], [b], [c], [d], arg)*fac
        subs = {a: randcplx()/10, b: randcplx()/10 + I,
                c: randcplx(), d: randcplx()}
        integral = meijerint_indefinite(g, x)
        assert integral is not None
        assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x)
    t(1, x)
    t(2, x)
    t(1, 2*x)
    t(1, x**2)
    t(5, x**S('3/2'))
    t(x**3, x)
    t(3*x**S('3/2'), 4*x**S('7/3'))


def test_meijerint_definite():
    v, b = meijerint_definite(x, x, 0, 0)
    assert v.is_zero and b is True
    v, b = meijerint_definite(x, x, oo, oo)
    assert v.is_zero and b is True


def test_inflate():
    subs = {a: randcplx()/10, b: randcplx()/10 + I, c: randcplx(),
            d: randcplx(), y: randcplx()/10}

    def t(a, b, arg, n):
        from sympy.core.mul import Mul
        m1 = meijerg(a, b, arg)
        m2 = Mul(*_inflate_g(m1, n))
        # NOTE: (the random number)**9 must still be on the principal sheet.
        # Thus make b&d small to create random numbers of small imaginary part.
        return verify_numerically(m1.subs(subs), m2.subs(subs), x, b=0.1, d=-0.1)
    assert t([[a], [b]], [[c], [d]], x, 3)
    assert t([[a, y], [b]], [[c], [d]], x, 3)
    assert t([[a], [b]], [[c, y], [d]], 2*x**3, 3)


def test_recursive():
    from sympy.core.symbol import symbols
    a, b, c = symbols('a b c', positive=True)
    r = exp(-(x - a)**2)*exp(-(x - b)**2)
    e = integrate(r, (x, 0, oo), meijerg=True)
    assert simplify(e.expand()) == (
        sqrt(2)*sqrt(pi)*(
        (erf(sqrt(2)*(a + b)/2) + 1)*exp(-a**2/2 + a*b - b**2/2))/4)
    e = integrate(exp(-(x - a)**2)*exp(-(x - b)**2)*exp(c*x), (x, 0, oo), meijerg=True)
    assert simplify(e) == (
        sqrt(2)*sqrt(pi)*(erf(sqrt(2)*(2*a + 2*b + c)/4) + 1)*exp(-a**2 - b**2
        + (2*a + 2*b + c)**2/8)/4)
    assert simplify(integrate(exp(-(x - a - b - c)**2), (x, 0, oo), meijerg=True)) == \
        sqrt(pi)/2*(1 + erf(a + b + c))
    assert simplify(integrate(exp(-(x + a + b + c)**2), (x, 0, oo), meijerg=True)) == \
        sqrt(pi)/2*(1 - erf(a + b + c))


@slow
def test_meijerint():
    from sympy.core.function import expand
    from sympy.core.symbol import symbols
    s, t, mu = symbols('s t mu', real=True)
    assert integrate(meijerg([], [], [0], [], s*t)
                     *meijerg([], [], [mu/2], [-mu/2], t**2/4),
                     (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x),
                                (x, 0, oo), meijerg=False),
                      Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    assert meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi)*sigma*(2 - erfc(mu/(2*sigma)))
    assert c == True

    i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1/(mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2),
                              x, -oo, oo) == (1, True)
    assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (S.Half, True)

    # Test a bug
    def res(n):
        return (1/(1 + x**2)).diff(x, n).subs(x, 1)*(-1)**n
    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True)
                    ) == sqrt(2)*sin(a + pi/4)/2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4)
                  *meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo
        ) == (
        (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
         /(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
           *gamma(a/2 + b/2 - s + 1)),
            (re(s) < 1) & (re(s) < S(1)/2) & (re(a)/2 + re(b)/2 + re(s) > 0)))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, S.Half)/4).expand()

    # Test hyperexpand bug.
    from sympy.functions.special.gamma_functions import lowergamma
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S.Half,
        alpha/2 + 1)), ((0, 0, S.Half), (Rational(-1, 2),)), alpha**2/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - S.Half)*((-1)**s + 1)*gamma(s/2 + S.Half)/2


def test_bessel():
    from sympy.functions.special.bessel import (besseli, besselj)
    assert simplify(integrate(besselj(a, z)*besselj(b, z)/z, (z, 0, oo),
                     meijerg=True, conds='none')) == \
        2*sin(pi*(a/2 - b/2))/(pi*(a - b)*(a + b))
    assert simplify(integrate(besselj(a, z)*besselj(a, z)/z, (z, 0, oo),
                     meijerg=True, conds='none')) == 1/(2*a)

    # TODO more orthogonality integrals

    assert simplify(integrate(sin(z*x)*(x**2 - 1)**(-(y + S.Half)),
                              (x, 1, oo), meijerg=True, conds='none')
                    *2/((z/2)**y*sqrt(pi)*gamma(S.Half - y))) == \
        besselj(y, z)

    # Werner Rosenheinrich
    # SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

    assert integrate(x*besselj(0, x), x, meijerg=True) == x*besselj(1, x)
    assert integrate(x*besseli(0, x), x, meijerg=True) == x*besseli(1, x)
    # TODO can do higher powers, but come out as high order ... should they be
    #      reduced to order 0, 1?
    assert integrate(besselj(1, x), x, meijerg=True) == -besselj(0, x)
    assert integrate(besselj(1, x)**2/x, x, meijerg=True) == \
        -(besselj(0, x)**2 + besselj(1, x)**2)/2
    # TODO more besseli when tables are extended or recursive mellin works
    assert integrate(besselj(0, x)**2/x**2, x, meijerg=True) == \
        -2*x*besselj(0, x)**2 - 2*x*besselj(1, x)**2 \
        + 2*besselj(0, x)*besselj(1, x) - besselj(0, x)**2/x
    assert integrate(besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        -besselj(0, x)**2/2
    assert integrate(x**2*besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        x**2*besselj(1, x)**2/2
    assert integrate(besselj(0, x)*besselj(1, x)/x, x, meijerg=True) == \
        (x*besselj(0, x)**2 + x*besselj(1, x)**2 -
            besselj(0, x)*besselj(1, x))
    # TODO how does besselj(0, a*x)*besselj(0, b*x) work?
    # TODO how does besselj(0, x)**2*besselj(1, x)**2 work?
    # TODO sin(x)*besselj(0, x) etc come out a mess
    # TODO can x*log(x)*besselj(0, x) be done?
    # TODO how does besselj(1, x)*besselj(0, x+a) work?
    # TODO more indefinite integrals when struve functions etc are implemented

    # test a substitution
    assert integrate(besselj(1, x**2)*x, x, meijerg=True) == \
        -besselj(0, x**2)/2


def test_inversion():
    from sympy.functions.special.bessel import besselj
    from sympy.functions.special.delta_functions import Heaviside

    def inv(f):
        return piecewise_fold(meijerint_inversion(f, s, t))
    assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t)
    assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t)
    assert inv(exp(-s)/s) == Heaviside(t - 1)
    assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t)

    # Test some antcedents checking.
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert inv(exp(s**2)) is None
    assert meijerint_inversion(exp(-s**2), s, t) is None


def test_inversion_conditional_output():
    from sympy.core.symbol import Symbol
    from sympy.integrals.transforms import InverseLaplaceTransform

    a = Symbol('a', positive=True)
    F = sqrt(pi/a)*exp(-2*sqrt(a)*sqrt(s))
    f = meijerint_inversion(F, s, t)
    assert not f.is_Piecewise

    b = Symbol('b', real=True)
    F = F.subs(a, b)
    f2 = meijerint_inversion(F, s, t)
    assert f2.is_Piecewise
    # first piece is same as f
    assert f2.args[0][0] == f.subs(a, b)
    # last piece is an unevaluated transform
    assert f2.args[-1][1]
    ILT = InverseLaplaceTransform(F, s, t, None)
    assert f2.args[-1][0] == ILT or f2.args[-1][0] == ILT.as_integral


def test_inversion_exp_real_nonreal_shift():
    from sympy.core.symbol import Symbol
    from sympy.functions.special.delta_functions import DiracDelta
    r = Symbol('r', real=True)
    c = Symbol('c', extended_real=False)
    a = 1 + 2*I
    z = Symbol('z')
    assert not meijerint_inversion(exp(r*s), s, t).is_Piecewise
    assert meijerint_inversion(exp(a*s), s, t) is None
    assert meijerint_inversion(exp(c*s), s, t) is None
    f = meijerint_inversion(exp(z*s), s, t)
    assert f.is_Piecewise
    assert isinstance(f.args[0][0], DiracDelta)


@slow
def test_lookup_table():
    from sympy.core.random import uniform, randrange
    from sympy.core.add import Add
    from sympy.integrals.meijerint import z as z_dummy
    table = {}
    _create_lookup_table(table)
    for _, l in sorted(table.items()):
        for formula, terms, cond, hint in sorted(l, key=default_sort_key):
            subs = {}
            for ai in list(formula.free_symbols) + [z_dummy]:
                if hasattr(ai, 'properties') and ai.properties:
                    # these Wilds match positive integers
                    subs[ai] = randrange(1, 10)
                else:
                    subs[ai] = uniform(1.5, 2.0)
            if not isinstance(terms, list):
                terms = terms(subs)

            # First test that hyperexpand can do this.
            expanded = [hyperexpand(g) for (_, g) in terms]
            assert all(x.is_Piecewise or not x.has(meijerg) for x in expanded)

            # Now test that the meijer g-function is indeed as advertised.
            expanded = Add(*[f*x for (f, x) in terms])
            a, b = formula.n(subs=subs), expanded.n(subs=subs)
            r = min(abs(a), abs(b))
            if r < 1:
                assert abs(a - b).n() <= 1e-10
            else:
                assert (abs(a - b)/r).n() <= 1e-10


def test_branch_bug():
    from sympy.functions.special.gamma_functions import lowergamma
    from sympy.simplify.powsimp import powdenest
    # TODO gammasimp cannot prove that the factor is unity
    assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x),
           polar=True) == 2*erf(x**3)*gamma(Rational(2, 3))/3/gamma(Rational(5, 3))
    assert integrate(erf(x**3), x, meijerg=True) == \
        2*x*erf(x**3)*gamma(Rational(2, 3))/(3*gamma(Rational(5, 3))) \
        - 2*gamma(Rational(2, 3))*lowergamma(Rational(2, 3), x**6)/(3*sqrt(pi)*gamma(Rational(5, 3)))


def test_linear_subs():
    from sympy.functions.special.bessel import besselj
    assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x)
    assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x)


@slow
def test_probability():
    # various integrals from probability theory
    from sympy.core.function import expand_mul
    from sympy.core.symbol import (Symbol, symbols)
    from sympy.simplify.gammasimp import gammasimp
    from sympy.simplify.powsimp import powsimp
    mu1, mu2 = symbols('mu1 mu2', nonzero=True)
    sigma1, sigma2 = symbols('sigma1 sigma2', positive=True)
    rate = Symbol('lambda', positive=True)

    def normal(x, mu, sigma):
        return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2)

    def exponential(x, rate):
        return rate*exp(-rate*x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
        mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1
    assert integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2
    assert integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1*mu2
    assert integrate((x + y + 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2
    assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        -1 + mu1 + mu2

    i = integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo), meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        2/rate**2

    def E(expr):
        res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo), meijerg=True)
        res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                        (y, -oo, oo), (x, 0, oo), meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x*y) == mu1/rate
    assert E(x*y**2) == mu1**2/rate + sigma1**2/rate
    ans = sigma1**2 + 1/rate**2
    assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
    assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
    assert simplify(E((x + y)**2) - E(x + y)**2) == ans

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True)
    betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
        /gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (gammasimp(i[0]), i[1]) == (alpha/(beta - 1), 1 < beta)
    j = integrate(x**2*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (beta > 2)
    assert gammasimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
        /(beta - 2)/(beta - 1)**2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols('a b', positive=True)
    betadist = x**(a - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
        a/(a + b)
    assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
        a*(a + 1)/(a + b)/(a + b + 1)
    assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
        gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y)

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1 - k/2)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
        sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2*chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
        k*(k + 2)
    assert gammasimp(integrate(((x - k)/sqrt(2*k))**3*chisquared, (x, 0, oo),
                    meijerg=True)) == 2*sqrt(2)/sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True)
    # XXX (x/b)**a does not work
    dagum = a*p/x*(x/b)**(a*p)/(1 + x**a/b**a)**(p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x*dagum
    assert simplify(integrate(arg, (x, 0, oo), meijerg=True, conds='none')
                    ) == a*b*gamma(1 - 1/a)*gamma(p + 1 + 1/a)/(
                    (a*p + 1)*gamma(p))
    assert simplify(integrate(x*arg, (x, 0, oo), meijerg=True, conds='none')
                    ) == a*b**2*gamma(1 - 2/a)*gamma(p + 1 + 2/a)/(
                    (a*p + 2)*gamma(p))

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
        /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x*f, (x, 0, oo), meijerg=True, conds='none')
                    ) == d2/(d2 - 2)
    assert simplify(integrate(x**2*f, (x, 0, oo), meijerg=True, conds='none')
                    ) == d2**2*(d1 + 2)/d1/(d2 - 4)/(d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols('lamda mu', positive=True)
    dist = sqrt(lamda/2/pi)*x**(Rational(-3, 2))*exp(-lamda*(x - mu)**2/x/2/mu**2)
    mysimp = lambda expr: simplify(expr.rewrite(exp))
    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x*dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu)**2*dist, (x, 0, oo))) == mu**3/lamda
    assert mysimp(integrate((x - mu)**3*dist, (x, 0, oo))) == 3*mu**5/lamda**2

    # Levi
    c = Symbol('c', positive=True)
    assert integrate(sqrt(c/2/pi)*exp(-c/2/(x - mu))/(x - mu)**S('3/2'),
                    (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    alpha, beta = symbols('alpha beta', positive=True)
    distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \
        (1 + x**beta/alpha**beta)**2
    # FIXME: If alpha, beta are not declared as finite the line below hangs
    # after the changes in:
    #    https://github.com/sympy/sympy/pull/16603
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
        pi*alpha/beta/sin(pi/beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
        pi*alpha**y*y/beta/sin(pi*y/beta)

    # weibull
    k = Symbol('k', positive=True)
    n = Symbol('n', positive=True)
    distn = k/lamda*(x/lamda)**(k - 1)*exp(-(x/lamda)**k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
        lamda**n*gamma(1 + n/k)

    # rice distribution
    from sympy.functions.special.bessel import besseli
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x/sigma**2*exp(-(x**2 + nu**2)/2/sigma**2)*besseli(0, x*nu/sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x - mu)/b)/2/b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
        2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert gammasimp(expand_mul(integrate(log(x)*x**(k - 1)*exp(-x)/gamma(k),
                              (x, 0, oo)))) == polygamma(0, k)


@slow
def test_expint():
    """ Test various exponential integrals. """
    from sympy.core.symbol import Symbol
    from sympy.functions.elementary.hyperbolic import sinh
    from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint)
    assert simplify(unpolarify(integrate(exp(-z*x)/x**y, (x, 1, oo),
                meijerg=True, conds='none'
                ).rewrite(expint).expand(func=True))) == expint(y, z)

    assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(1, z)
    assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(2, z).rewrite(Ei).rewrite(expint)
    assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(3, z).rewrite(Ei).rewrite(expint).expand()

    t = Symbol('t', positive=True)
    assert integrate(-cos(x)/x, (x, t, oo), meijerg=True).expand() == Ci(t)
    assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \
        Si(t) - pi/2
    assert integrate(sin(x)/x, (x, 0, z), meijerg=True) == Si(z)
    assert integrate(sinh(x)/x, (x, 0, z), meijerg=True) == Shi(z)
    assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \
        I*pi - expint(1, x)
    assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \
        == expint(1, x) - exp(-x)/x - I*pi

    u = Symbol('u', polar=True)
    assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Ci(u)
    assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Chi(u)

    assert integrate(expint(1, x), x, meijerg=True
            ).rewrite(expint).expand() == x*expint(1, x) - exp(-x)
    assert integrate(expint(2, x), x, meijerg=True
            ).rewrite(expint).expand() == \
        -x**2*expint(1, x)/2 + x*exp(-x)/2 - exp(-x)/2
    assert simplify(unpolarify(integrate(expint(y, x), x,
                 meijerg=True).rewrite(expint).expand(func=True))) == \
        -expint(y + 1, x)

    assert integrate(Si(x), x, meijerg=True) == x*Si(x) + cos(x)
    assert integrate(Ci(u), u, meijerg=True).expand() == u*Ci(u) - sin(u)
    assert integrate(Shi(x), x, meijerg=True) == x*Shi(x) - cosh(x)
    assert integrate(Chi(u), u, meijerg=True).expand() == u*Chi(u) - sinh(u)

    assert integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True) == pi/4
    assert integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True) == log(2)/2


def test_messy():
    from sympy.functions.elementary.hyperbolic import (acosh, acoth)
    from sympy.functions.elementary.trigonometric import (asin, atan)
    from sympy.functions.special.bessel import besselj
    from sympy.functions.special.error_functions import (Chi, E1, Shi, Si)
    from sympy.integrals.transforms import (fourier_transform, laplace_transform)
    assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi/2)/s, 0, True)

    assert laplace_transform(Shi(x), x, s) == (
        acoth(s)/s, -oo, s**2 > 1)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x, s) == (
        (log(s**(-2)) - log(1 - 1/s**2))/(2*s), -oo, s**2 > 1)

    # TODO maybe simplify the inequalities? when the simplification
    # allows for generators instead of symbols this will work
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, (re(a) > -2) & (re(a) > -1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    ans = fourier_transform(besselj(1, x)/x, x, s, noconds=False)
    assert tuple([ans[0].factor(deep=True).expand(), ans[1]]) == \
        (Piecewise((0, (s > 1/(2*pi)) | (s < -1/(2*pi))),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(S.Half + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), abs(x**(-2)) > 1), (I*asin(1/x), True))


def test_issue_6122():
    assert integrate(exp(-I*x**2), (x, -oo, oo), meijerg=True) == \
        -I*sqrt(pi)*exp(I*pi/4)


def test_issue_6252():
    expr = 1/x/(a + b*x)**Rational(1, 3)
    anti = integrate(expr, x, meijerg=True)
    assert not anti.has(hyper)
    # XXX the expression is a mess, but actually upon differentiation and
    # putting in numerical values seems to work...


def test_issue_6348():
    assert integrate(exp(I*x)/(1 + x**2), (x, -oo, oo)).simplify().rewrite(exp) \
        == pi*exp(-1)


def test_fresnel():
    from sympy.functions.special.error_functions import (fresnelc, fresnels)

    assert expand_func(integrate(sin(pi*x**2/2), x)) == fresnels(x)
    assert expand_func(integrate(cos(pi*x**2/2), x)) == fresnelc(x)


def test_issue_6860():
    assert meijerint_indefinite(x**x**x, x) is None


def test_issue_7337():
    f = meijerint_indefinite(x*sqrt(2*x + 3), x).together()
    assert f == sqrt(2*x + 3)*(2*x**2 + x - 3)/5
    assert f._eval_interval(x, S.NegativeOne, S.One) == Rational(2, 5)


def test_issue_8368():
    assert meijerint_indefinite(cosh(x)*exp(-x*t), x) == (
        (-t - 1)*exp(x) + (-t + 1)*exp(-x))*exp(-t*x)/2/(t**2 - 1)


def test_issue_10211():
    from sympy.abc import h, w
    assert integrate((1/sqrt((y-x)**2 + h**2)**3), (x,0,w), (y,0,w)) == \
        2*sqrt(1 + w**2/h**2)/h - 2/h


def test_issue_11806():
    from sympy.core.symbol import symbols
    y, L = symbols('y L', positive=True)
    assert integrate(1/sqrt(x**2 + y**2)**3, (x, -L, L)) == \
        2*L/(y**2*sqrt(L**2 + y**2))

def test_issue_10681():
    from sympy.polys.domains.realfield import RR
    from sympy.abc import R, r
    f = integrate(r**2*(R**2-r**2)**0.5, r, meijerg=True)
    g = (1.0/3)*R**1.0*r**3*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),),
                                  r**2*exp_polar(2*I*pi)/R**2)
    assert RR.almosteq((f/g).n(), 1.0, 1e-12)

def test_issue_13536():
    from sympy.core.symbol import Symbol
    a = Symbol('a', positive=True)
    assert integrate(1/x**2, (x, oo, a)) == -1/a


def test_issue_6462():
    from sympy.core.symbol import Symbol
    x = Symbol('x')
    n = Symbol('n')
    # Not the actual issue, still wrong answer for n = 1, but that there is no
    # exception
    assert integrate(cos(x**n)/x**n, x, meijerg=True).subs(n, 2).equals(
            integrate(cos(x**2)/x**2, x, meijerg=True))


def test_indefinite_1_bug():
    assert integrate((b + t)**(-a), t, meijerg=True
        ) == -b/(b**a*(1 + t/b)**a*(a - 1)
        ) - t/(b**a*(1 + t/b)**a*(a - 1))


def test_pr_23583():
    # This result is wrong. Check whether new result is correct when this test fail.
    assert integrate(1/sqrt((x - I)**2-1), meijerg=True) == \
           Piecewise((acosh(x - I), Abs((x - I)**2) > 1), (-I*asin(x - I), True))
