a
    RG5d                     @   sX   d dl mZ d dlmZ d dlmZ d dlmZmZ ddl	m
Z
mZ dd Zd	d
 ZdS )    )Mul)S)default_sort_key)
DiracDelta	Heaviside   )Integral	integratec           	   	   C   s4  g }d}|   \}}t|td}|| |D ]b}|jrdt|jtrd||	|j|j
d  |j}|du rt|tr||r|}q.|| q.|s(g }|D ]b}t|tr||jd|d q|jrt|jtr||	|jjd|d|j
 q|| q||krt|  }nd}d|fS |t| fS )a  change_mul(node, x)

       Rearranges the operands of a product, bringing to front any simple
       DiracDelta expression.

       Explanation
       ===========

       If no simple DiracDelta expression was found, then all the DiracDelta
       expressions are simplified (using DiracDelta.expand(diracdelta=True, wrt=x)).

       Return: (dirac, new node)
       Where:
         o dirac is either a simple DiracDelta expression or None (if no simple
           expression was found);
         o new node is either a simplified DiracDelta expressions or None (if it
           could not be simplified).

       Examples
       ========

       >>> from sympy import DiracDelta, cos
       >>> from sympy.integrals.deltafunctions import change_mul
       >>> from sympy.abc import x, y
       >>> change_mul(x*y*DiracDelta(x)*cos(x), x)
       (DiracDelta(x), x*y*cos(x))
       >>> change_mul(x*y*DiracDelta(x**2 - 1)*cos(x), x)
       (None, x*y*cos(x)*DiracDelta(x - 1)/2 + x*y*cos(x)*DiracDelta(x + 1)/2)
       >>> change_mul(x*y*DiracDelta(cos(x))*cos(x), x)
       (None, None)

       See Also
       ========

       sympy.functions.special.delta_functions.DiracDelta
       deltaintegrate
    N)keyr   TZ
diracdeltawrt)args_cncsortedr   extendis_Pow
isinstancebaser   appendfuncexp	is_simpleexpandr   )	nodexnew_argsdiraccncZsorted_argsargZnnode r   Z/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/integrals/deltafunctions.py
change_mul   s2    '

"
r!   c                 C   s  |  tsdS | jtkr| jd|d}|| kr| |rt| jdksT| jd dkrbt| jd S t| jd | jd d | jd  	  S nt
||}|S nR| js| jr|  }| |krt
||}|durt|ts|S nt| |\}}|s|rt
||}|S nddlm} |jd|d}|jrFt||\}}|| }||jd |d }	t|jdkrndn|jd }
d}|
dkrtj|
 |||
||	 }|jr|
d8 }
|d7 }n,|dkr|t||	  S |t||d  S q|tjS dS )a  
    deltaintegrate(f, x)

    Explanation
    ===========

    The idea for integration is the following:

    - If we are dealing with a DiracDelta expression, i.e. DiracDelta(g(x)),
      we try to simplify it.

      If we could simplify it, then we integrate the resulting expression.
      We already know we can integrate a simplified expression, because only
      simple DiracDelta expressions are involved.

      If we couldn't simplify it, there are two cases:

      1) The expression is a simple expression: we return the integral,
         taking care if we are dealing with a Derivative or with a proper
         DiracDelta.

      2) The expression is not simple (i.e. DiracDelta(cos(x))): we can do
         nothing at all.

    - If the node is a multiplication node having a DiracDelta term:

      First we expand it.

      If the expansion did work, then we try to integrate the expansion.

      If not, we try to extract a simple DiracDelta term, then we have two
      cases:

      1) We have a simple DiracDelta term, so we return the integral.

      2) We didn't have a simple term, but we do have an expression with
         simplified DiracDelta terms, so we integrate this expression.

    Examples
    ========

        >>> from sympy.abc import x, y, z
        >>> from sympy.integrals.deltafunctions import deltaintegrate
        >>> from sympy import sin, cos, DiracDelta
        >>> deltaintegrate(x*sin(x)*cos(x)*DiracDelta(x - 1), x)
        sin(1)*cos(1)*Heaviside(x - 1)
        >>> deltaintegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y)
        z**2*DiracDelta(x - z)*Heaviside(y - z)

    See Also
    ========

    sympy.functions.special.delta_functions.DiracDelta
    sympy.integrals.integrals.Integral
    NTr   r   r   )solve)hasr   r   r   r   lenargsr   as_polyLCr	   is_Mulr   r   r   r!   sympy.solversr"   r   NegativeOnediffsubsis_zeroZero)fr   hfhgZ	deltatermZ	rest_multr"   Zrest_mult_2pointnmrr   r   r    deltaintegrateQ   sT    8








r7   N)sympy.core.mulr   sympy.core.singletonr   sympy.core.sortingr   sympy.functionsr   r   	integralsr   r	   r!   r7   r   r   r   r    <module>   s   I