a
    RG5dÌ-  ã                   @   s‚   d dl mZ d dlmZmZ d dlmZ d dlmZm	Z	 d dl
mZ ddd„ZG dd	„ d	eƒZG d
d„ deƒZG dd„ deƒZdS )é    )ÚS)ÚFunctionÚArgumentIndexError)ÚDummy)ÚgammaÚdigamma)Ú	conjugatec                 C   s4   ddl m}m} ||kr |dƒS || ||||ƒS d S )Nr   )ÚbetaincÚmpf)Úmpmathr	   r
   )ÚaÚbÚx1Úx2Úregr	   r
   © r   úb/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/functions/special/beta_functions.pyÚbetainc_mpmath_fix   s    r   c                   @   sT   e Zd ZdZdZdd„ Zeddd„ƒZdd	„ Zd
d„ Z	dd„ Z
ddd„Zdd„ ZdS )Úbetaa×	  
    The beta integral is called the Eulerian integral of the first kind by
    Legendre:

    .. math::
        \mathrm{B}(x,y)  \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t.

    Explanation
    ===========

    The Beta function or Euler's first integral is closely associated
    with the gamma function. The Beta function is often used in probability
    theory and mathematical statistics. It satisfies properties like:

    .. math::
        \mathrm{B}(a,1) = \frac{1}{a} \\
        \mathrm{B}(a,b) = \mathrm{B}(b,a)  \\
        \mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}

    Therefore for integral values of $a$ and $b$:

    .. math::
        \mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!}

    A special case of the Beta function when `x = y` is the
    Central Beta function. It satisfies properties like:

    .. math::
        \mathrm{B}(x) = 2^{1 - 2x}\mathrm{B}(x, \frac{1}{2})
        \mathrm{B}(x) = 2^{1 - 2x} cos(\pi x) \mathrm{B}(\frac{1}{2} - x, x)
        \mathrm{B}(x) = \int_{0}^{1} \frac{t^x}{(1 + t)^{2x}} dt
        \mathrm{B}(x) = \frac{2}{x} \prod_{n = 1}^{\infty} \frac{n(n + 2x)}{(n + x)^2}

    Examples
    ========

    >>> from sympy import I, pi
    >>> from sympy.abc import x, y

    The Beta function obeys the mirror symmetry:

    >>> from sympy import beta, conjugate
    >>> conjugate(beta(x, y))
    beta(conjugate(x), conjugate(y))

    Differentiation with respect to both $x$ and $y$ is supported:

    >>> from sympy import beta, diff
    >>> diff(beta(x, y), x)
    (polygamma(0, x) - polygamma(0, x + y))*beta(x, y)

    >>> diff(beta(x, y), y)
    (polygamma(0, y) - polygamma(0, x + y))*beta(x, y)

    >>> diff(beta(x), x)
    2*(polygamma(0, x) - polygamma(0, 2*x))*beta(x, x)

    We can numerically evaluate the Beta function to
    arbitrary precision for any complex numbers x and y:

    >>> from sympy import beta
    >>> beta(pi).evalf(40)
    0.02671848900111377452242355235388489324562

    >>> beta(1 + I).evalf(20)
    -0.2112723729365330143 - 0.7655283165378005676*I

    See Also
    ========

    gamma: Gamma function.
    uppergamma: Upper incomplete gamma function.
    lowergamma: Lower incomplete gamma function.
    polygamma: Polygamma function.
    loggamma: Log Gamma function.
    digamma: Digamma function.
    trigamma: Trigamma function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function
    .. [2] http://mathworld.wolfram.com/BetaFunction.html
    .. [3] http://dlmf.nist.gov/5.12

    Tc                 C   sd   | j \}}|dkr0t||ƒt|ƒt|| ƒ  S |dkrVt||ƒt|ƒt|| ƒ  S t| |ƒ‚d S )Né   é   )Úargsr   r   r   )ÚselfÚargindexÚxÚyr   r   r   Úfdiffl   s    
z
beta.fdiffNc                 C   s:   |d u rt ||ƒS |tju r$d| S |tju r6d| S d S ©Nr   )r   r   ÚOne)Úclsr   r   r   r   r   Úevalw   s    


z	beta.evalc                 K   s&   | j \}}t|ƒt|ƒ t|| ƒ S ©N)r   r   )r   Úhintsr   r   r   r   r   Ú_eval_expand_func€   s    
zbeta._eval_expand_funcc                 C   s   | j d jo| j d jS ©Nr   r   )r   Úis_real©r   r   r   r   Ú_eval_is_real„   s    zbeta._eval_is_realc                 C   s    |   | jd  ¡ | jd  ¡ ¡S r$   )Úfuncr   r   r&   r   r   r   Ú_eval_conjugate‡   s    zbeta._eval_conjugatec                 K   s   | j f i |¤ŽS r!   )r#   )r   r   r   Ú	piecewiseÚkwargsr   r   r   Ú_eval_rewrite_as_gammaŠ   s    zbeta._eval_rewrite_as_gammac                 K   s<   ddl m} tdƒ}|||d  d| |d   |ddfƒS ©Nr   )ÚIntegralÚtr   ©Úsympy.integrals.integralsr.   r   )r   r   r   r+   r.   r/   r   r   r   Ú_eval_rewrite_as_Integral   s    zbeta._eval_rewrite_as_Integral)N)T)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú
unbranchedr   Úclassmethodr    r#   r'   r)   r,   r2   r   r   r   r   r      s   V
r   c                   @   sH   e Zd ZdZdZdZdd„ Zdd„ Zdd	„ Zd
d„ Z	dd„ Z
dd„ ZdS )r	   a[  
    The Generalized Incomplete Beta function is defined as

    .. math::
        \mathrm{B}_{(x_1, x_2)}(a, b) = \int_{x_1}^{x_2} t^{a - 1} (1 - t)^{b - 1} dt

    The Incomplete Beta function is a special case
    of the Generalized Incomplete Beta function :

    .. math:: \mathrm{B}_z (a, b) = \mathrm{B}_{(0, z)}(a, b)

    The Incomplete Beta function satisfies :

    .. math:: \mathrm{B}_z (a, b) = (-1)^a \mathrm{B}_{\frac{z}{z - 1}} (a, 1 - a - b)

    The Beta function is a special case of the Incomplete Beta function :

    .. math:: \mathrm{B}(a, b) = \mathrm{B}_{1}(a, b)

    Examples
    ========

    >>> from sympy import betainc, symbols, conjugate
    >>> a, b, x, x1, x2 = symbols('a b x x1 x2')

    The Generalized Incomplete Beta function is given by:

    >>> betainc(a, b, x1, x2)
    betainc(a, b, x1, x2)

    The Incomplete Beta function can be obtained as follows:

    >>> betainc(a, b, 0, x)
    betainc(a, b, 0, x)

    The Incomplete Beta function obeys the mirror symmetry:

    >>> conjugate(betainc(a, b, x1, x2))
    betainc(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))

    We can numerically evaluate the Incomplete Beta function to
    arbitrary precision for any complex numbers a, b, x1 and x2:

    >>> from sympy import betainc, I
    >>> betainc(2, 3, 4, 5).evalf(10)
    56.08333333
    >>> betainc(0.75, 1 - 4*I, 0, 2 + 3*I).evalf(25)
    0.2241657956955709603655887 + 0.3619619242700451992411724*I

    The Generalized Incomplete Beta function can be expressed
    in terms of the Generalized Hypergeometric function.

    >>> from sympy import hyper
    >>> betainc(a, b, x1, x2).rewrite(hyper)
    (-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/a

    See Also
    ========

    beta: Beta function
    hyper: Generalized Hypergeometric function

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
    .. [2] https://dlmf.nist.gov/8.17
    .. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
    .. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/

    é   Tc                 C   sf   | j \}}}}|dkr4d| |d   ||d   S |dkrXd| |d  ||d   S t| |ƒ‚d S ©Né   r   r9   )r   r   ©r   r   r   r   r   r   r   r   r   r   á   s    zbetainc.fdiffc                 C   s
   t | jfS r!   )r   r   r&   r   r   r   Ú_eval_mpmathì   s    zbetainc._eval_mpmathc                 C   s   t dd„ | jD ƒƒrdS d S )Nc                 s   s   | ]}|j V  qd S r!   ©r%   ©Ú.0Úargr   r   r   Ú	<genexpr>ð   ó    z(betainc._eval_is_real.<locals>.<genexpr>T©Úallr   r&   r   r   r   r'   ï   s    zbetainc._eval_is_realc                 C   s   | j tt| jƒŽ S r!   ©r(   Úmapr   r   r&   r   r   r   r)   ó   s    zbetainc._eval_conjugatec                 K   s<   ddl m} tdƒ}|||d  d| |d   |||fƒS r-   r0   )r   r   r   r   r   r+   r.   r/   r   r   r   r2   ö   s    z!betainc._eval_rewrite_as_Integralc                 K   sT   ddl m} || ||d| f|d f|ƒ || ||d| f|d f|ƒ  | S ©Nr   )Úhyperr   )Úsympy.functions.special.hyperrI   )r   r   r   r   r   r+   rI   r   r   r   Ú_eval_rewrite_as_hyperû   s    zbetainc._eval_rewrite_as_hyperN)r3   r4   r5   r6   Únargsr7   r   r=   r'   r)   r2   rK   r   r   r   r   r	   –   s   Gr	   c                   @   sP   e Zd ZdZdZdZdd„ Zdd„ Zdd	„ Zd
d„ Z	dd„ Z
dd„ Zdd„ ZdS )Úbetainc_regularizeda  
    The Generalized Regularized Incomplete Beta function is given by

    .. math::
        \mathrm{I}_{(x_1, x_2)}(a, b) = \frac{\mathrm{B}_{(x_1, x_2)}(a, b)}{\mathrm{B}(a, b)}

    The Regularized Incomplete Beta function is a special case
    of the Generalized Regularized Incomplete Beta function :

    .. math:: \mathrm{I}_z (a, b) = \mathrm{I}_{(0, z)}(a, b)

    The Regularized Incomplete Beta function is the cumulative distribution
    function of the beta distribution.

    Examples
    ========

    >>> from sympy import betainc_regularized, symbols, conjugate
    >>> a, b, x, x1, x2 = symbols('a b x x1 x2')

    The Generalized Regularized Incomplete Beta
    function is given by:

    >>> betainc_regularized(a, b, x1, x2)
    betainc_regularized(a, b, x1, x2)

    The Regularized Incomplete Beta function
    can be obtained as follows:

    >>> betainc_regularized(a, b, 0, x)
    betainc_regularized(a, b, 0, x)

    The Regularized Incomplete Beta function
    obeys the mirror symmetry:

    >>> conjugate(betainc_regularized(a, b, x1, x2))
    betainc_regularized(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))

    We can numerically evaluate the Regularized Incomplete Beta function
    to arbitrary precision for any complex numbers a, b, x1 and x2:

    >>> from sympy import betainc_regularized, pi, E
    >>> betainc_regularized(1, 2, 0, 0.25).evalf(10)
    0.4375000000
    >>> betainc_regularized(pi, E, 0, 1).evalf(5)
    1.00000

    The Generalized Regularized Incomplete Beta function can be
    expressed in terms of the Generalized Hypergeometric function.

    >>> from sympy import hyper
    >>> betainc_regularized(a, b, x1, x2).rewrite(hyper)
    (-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/(a*beta(a, b))

    See Also
    ========

    beta: Beta function
    hyper: Generalized Hypergeometric function

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
    .. [2] https://dlmf.nist.gov/8.17
    .. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
    .. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/

    r9   Tc                 C   s   t  | ||||¡S r!   )r   Ú__new__)r   r   r   r   r   r   r   r   rN   L  s    zbetainc_regularized.__new__c                 C   s   t g | j¢tdƒ‘R fS r   )r   r   r   r&   r   r   r   r=   O  s    z betainc_regularized._eval_mpmathc                 C   sz   | j \}}}}|dkr>d| |d   ||d   t||ƒ S |dkrld| |d  ||d   t||ƒ S t| |ƒ‚d S r:   )r   r   r   r<   r   r   r   r   R  s    (&zbetainc_regularized.fdiffc                 C   s   t dd„ | jD ƒƒrdS d S )Nc                 s   s   | ]}|j V  qd S r!   r>   r?   r   r   r   rB   ^  rC   z4betainc_regularized._eval_is_real.<locals>.<genexpr>TrD   r&   r   r   r   r'   ]  s    z!betainc_regularized._eval_is_realc                 C   s   | j tt| jƒŽ S r!   rF   r&   r   r   r   r)   a  s    z#betainc_regularized._eval_conjugatec           
      K   sT   ddl m} tdƒ}||d  d| |d   }|||||fƒ}	|	|||ddfƒ S r-   r0   )
r   r   r   r   r   r+   r.   r/   Ú	integrandÚexprr   r   r   r2   d  s
    z-betainc_regularized._eval_rewrite_as_Integralc                 K   sb   ddl m} || ||d| f|d f|ƒ || ||d| f|d f|ƒ  | }|t||ƒ S rH   )rJ   rI   r   )r   r   r   r   r   r+   rI   rP   r   r   r   rK   k  s    Hz*betainc_regularized._eval_rewrite_as_hyperN)r3   r4   r5   r6   rL   r7   rN   r=   r   r'   r)   r2   rK   r   r   r   r   rM     s   ErM   N)r   )Ú
sympy.corer   Úsympy.core.functionr   r   Úsympy.core.symbolr   Ú'sympy.functions.special.gamma_functionsr   r   Ú$sympy.functions.elementary.complexesr   r   r   r	   rM   r   r   r   r   Ú<module>   s   
 m