a
    RG5dB                     @   s  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZ d dlmZmZ d dlmZmZmZ d d	lmZ d d
lmZmZ d dlmZ d dlmZ d dlmZm Z m!Z!m"Z" d dl#m$Z$ d dl%m&Z&m'Z' d dl(m)Z)m*Z*m+Z+ d dl,m-Z-m.Z.m/Z/m0Z0m1Z1 d dl2m3Z3m4Z4m5Z5 d dl6m7Z7 d dl8m9Z9 d dl:m;Z;m<Z< G dd deZ=G dd de=Z>G dd de=Z?G dd de=Z@G dd de=ZAG d d! d!e=ZBG d"d# d#e=ZCd$d% ZDG d&d' d'e=ZEd(d) ZFd*d+ ZGG d,d- d-eEZHG d.d/ d/eEZIG d0d1 d1eEZJG d2d3 d3eJZKG d4d5 d5eJZLdGd8d9ZMG d:d; d;eZNG d<d= d=eNZOG d>d? d?eNZPG d@dA dAeNZQG dBdC dCeNZRG dDdE dEeZSdFS )H    wraps)S)Add)cacheit)Expr)FunctionArgumentIndexError_mexpand)fuzzy_or	fuzzy_not)RationalpiI)Pow)DummyWild)sympify)	factorial)sincoscsccot)ceiling)explog)cbrtsqrtroot)Absreim
polar_lift
unpolarify)gammadigamma
uppergamma)hyper)spherical_bessel_fn)mpworkprecc                   @   s^   e Zd ZdZedd Zedd Zedd Zdd	d
Z	dd Z
dd Zdd Zdd ZdS )
BesselBasea  
    Abstract base class for Bessel-type functions.

    This class is meant to reduce code duplication.
    All Bessel-type functions can 1) be differentiated, with the derivatives
    expressed in terms of similar functions, and 2) be rewritten in terms
    of other Bessel-type functions.

    Here, Bessel-type functions are assumed to have one complex parameter.

    To use this base class, define class attributes ``_a`` and ``_b`` such that
    ``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.

    c                 C   s
   | j d S )z( The order of the Bessel-type function. r   argsself r0   Z/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/functions/special/bessel.pyorder4   s    zBesselBase.orderc                 C   s
   | j d S )z+ The argument of the Bessel-type function.    r,   r.   r0   r0   r1   argument9   s    zBesselBase.argumentc                 C   s   d S Nr0   clsnuzr0   r0   r1   eval>   s    zBesselBase.eval   c                 C   sN   |dkrt | || jd | | jd | j | jd | | jd | j  S Nr;   r3   )r	   _b	__class__r2   r4   _ar/   argindexr0   r0   r1   fdiffB   s
    
zBesselBase.fdiffc                 C   s*   | j }|jdu r&| | j | S d S NF)r4   is_extended_negativer>   r2   	conjugater/   r9   r0   r0   r1   _eval_conjugateH   s    
zBesselBase._eval_conjugatec                 C   sx   | j | j }}||rdS |||s,d S |||}|jrdt| ttt	t
ttfsZ|jsdt|jS tt|j|jgS rC   )r2   r4   has_eval_is_meromorphicsubs
is_integer
isinstancebesseljbesselihn1hn2jnynis_zeror   is_infiniter   )r/   xar8   r9   z0r0   r0   r1   rI   M   s    

zBesselBase._eval_is_meromorphicc                 K   s   | j | j| j  }}}|jr|d jrn| j | j ||d |  d| j |d  ||d |  |  S |d jrd| j |d  ||d |  | | j| j ||d |   S | S Nr3   r;   )	r2   r4   r>   is_realis_positiver?   r=   _eval_expand_funcis_negative)r/   hintsr8   r9   fr0   r0   r1   r[   Z   s    
&
&zBesselBase._eval_expand_funcc                 K   s   ddl m} || S )Nr   )
besselsimp)sympy.simplify.simplifyr_   )r/   kwargsr_   r0   r0   r1   _eval_simplifye   s    zBesselBase._eval_simplifyN)r;   )__name__
__module____qualname____doc__propertyr2   r4   classmethodr:   rB   rG   rI   r[   rb   r0   r0   r0   r1   r+   $   s   



r+   c                       sd   e Zd ZdZejZejZedd Z	dd Z
dd Zdd	 ZdddZdd Zd fdd	Z  ZS )rM   a3  
    Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $J$ function of order $\nu$ is defined to be the function
    satisfying Bessel's differential equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,

    with Laurent expansion

    .. math ::
        J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),

    if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$
    *is* a negative integer, then the definition is

    .. math ::
        J_{-n}(z) = (-1)^n J_n(z).

    Examples
    ========

    Create a Bessel function object:

    >>> from sympy import besselj, jn
    >>> from sympy.abc import z, n
    >>> b = besselj(n, z)

    Differentiate it:

    >>> b.diff(z)
    besselj(n - 1, z)/2 - besselj(n + 1, z)/2

    Rewrite in terms of spherical Bessel functions:

    >>> b.rewrite(jn)
    sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)

    Access the parameter and argument:

    >>> b.order
    n
    >>> b.argument
    z

    See Also
    ========

    bessely, besseli, besselk

    References
    ==========

    .. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
           Handbook of Mathematical Functions with Formulas, Graphs, and
           Mathematical Tables
    .. [2] Luke, Y. L. (1969), The Special Functions and Their
           Approximations, Volume 1
    .. [3] https://en.wikipedia.org/wiki/Bessel_function
    .. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/

    c                 C   sZ  |j rX|j rtjS |jr"|j du s,t|jr2tjS t|jrL|jdurLtjS |j	rXtj
S |tjtjfv rntjS | r|| | |   t||  S |jr| rtj|  t| | S |t}|rt| t|| S |jrt|}||kr:t||S n8| \}}|dkr:td| t | t t|| S t|}||krVt||S d S NFTr   r;   )rS   r   OnerK   r    rZ   Zeror\   ComplexInfinityis_imaginaryNaNInfinityNegativeInfinitycould_extract_minus_signrM   NegativeOneextract_multiplicativelyr   rN   r#   extract_branch_factorr   r   r7   r8   r9   ZnewznZnnur0   r0   r1   r:      s:     


"
zbesselj.evalc                 K   s(   t tt | d t|tt |  S Nr;   )r   r   r   rN   r"   r/   r8   r9   ra   r0   r0   r1   _eval_rewrite_as_besseli   s    z besselj._eval_rewrite_as_besselic                 K   s<   |j du r8tt| t| | tt| t||  S d S rC   )rK   r   r   besselyr   rx   r0   r0   r1   _eval_rewrite_as_bessely   s    
z besselj._eval_rewrite_as_besselyc                 K   s"   t d| t t|tj | j S rw   )r   r   rQ   r   Halfr4   rx   r0   r0   r1   _eval_rewrite_as_jn   s    zbesselj._eval_rewrite_as_jnNr   c                 C   sR   | j \}}||}||jv r:|| d| t|d   S | |||dS d S Nr;   r3   r   )r-   as_leading_termfree_symbolsr$   funcrJ   )r/   rU   logxcdirr8   r9   argr0   r0   r1   _eval_as_leading_term   s
    


zbesselj._eval_as_leading_termc                 C   s   | j \}}|jr|jrdS d S NTr-   rK   is_extended_realr/   r8   r9   r0   r0   r1   _eval_is_extended_real   s    
zbesselj._eval_is_extended_realc              	      s$  ddl m} | j\}}z||\}}	W n ttfyB   |  Y S 0 |	jrt||	 }
||| |}|d ||||	 }|t
ju r|S t|d | 	 }|| t|d  }|g}td|
d d D ]4}|| |||   9 }t|| 	 }|| qt| | S tt| ||||S Nr   )Orderr;   r3   )sympy.series.orderr   r-   leadterm
ValueErrorNotImplementedErrorrZ   r   _eval_nseriesremoveOr   rk   r
   r$   rangeappendr   superrM   )r/   rU   rv   r   r   r   r8   r9   _r   newnorttermskr>   r0   r1   r      s*    


zbesselj._eval_nseries)Nr   )r   )rc   rd   re   rf   r   rj   r?   r=   rh   r:   ry   r{   r}   r   r   r   __classcell__r0   r0   r   r1   rM   j   s   D
#
rM   c                       sd   e Zd ZdZejZejZedd Z	dd Z
dd Zdd	 ZdddZdd Zd fdd	Z  ZS )rz   a_  
    Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $Y$ function of order $\nu$ is defined as

    .. math ::
        Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
                                            - J_{-\mu}(z)}{\sin(\pi \mu)},

    where $J_\mu(z)$ is the Bessel function of the first kind.

    It is a solution to Bessel's equation, and linearly independent from
    $J_\nu$.

    Examples
    ========

    >>> from sympy import bessely, yn
    >>> from sympy.abc import z, n
    >>> b = bessely(n, z)
    >>> b.diff(z)
    bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    >>> b.rewrite(yn)
    sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)

    See Also
    ========

    besselj, besseli, besselk

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/

    c                 C   sv   |j r6|j rtjS t|j du r&tjS t|j r6tjS |tjtjfv rLtjS |jrr|	 rrtj
|  t| | S d S rC   )rS   r   rp   r    rl   rn   ro   rk   rK   rq   rr   rz   r6   r0   r0   r1   r:   7  s    
zbessely.evalc                 K   s<   |j du r8tt| tt| t|| t| |  S d S rC   )rK   r   r   r   rM   rx   r0   r0   r1   _eval_rewrite_as_besseljG  s    
z bessely._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r5   )r   r-   rewriterN   r/   r8   r9   ra   ajr0   r0   r1   ry   K  s    z bessely._eval_rewrite_as_besselic                 K   s"   t d| t t|tj | j S rw   )r   r   rR   r   r|   r4   rx   r0   r0   r1   _eval_rewrite_as_ynP  s    zbessely._eval_rewrite_as_ynNr   c           
      C   s   | j \}}dt t|d  t|| }|jrN|d |   t|d  t ntj}|d |  tt|  t|d tj	  }t
|||g j||d}	||	jv s||	jv r|	S | |||d S d S )Nr;   r3   )r   r   )r-   r   r   rM   rZ   r   r   rk   r%   
EulerGammar   r   r   r   rJ   cancel)
r/   rU   r   r   r8   r9   Zterm_oneZterm_twoZ
term_threer   r0   r0   r1   r   S  s    
,,zbessely._eval_as_leading_termc                 C   s   | j \}}|jr|jrdS d S r   r-   rK   rZ   r   r0   r0   r1   r   ^  s    
zbessely._eval_is_extended_realc              	      s   ddl m} | j\}}z||\}}	W n ttfyB   |  Y S 0 |	jr
|jr
t||	 }
t	||}dt
 t|d  | ||||}g g  }}||| |}|d |||| }|tju r|S t|d |  }|tjkrX||  t|d  t
 }|| td|d D ]8}|||| d  | 9 }t||  }|| q|| t
t|  }|t|d tj  }|| td|
d d D ]V}|| |||   9 }t||  }|t|| d t|d   }|| q|t|  t|  S tt| ||||S r   )r   r   r-   r   r   r   rZ   rK   r   rM   r   r   r   r   r   rk   r
   rj   r   r   r   r%   r   r   r   rz   )r/   rU   rv   r   r   r   r8   r9   r   r   r   bnrV   bcr   r   r   r   r   pr   r0   r1   r   c  sB    


$



 zbessely._eval_nseries)Nr   )r   )rc   rd   re   rf   r   rj   r?   r=   rh   r:   r   ry   r   r   r   r   r   r0   r0   r   r1   rz     s   (

rz   c                   @   sJ   e Zd ZdZej ZejZedd Z	dd Z
dd Zdd	 Zd
d ZdS )rN   a  
    Modified Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $I$ function is a solution to the modified Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.

    It can be defined as

    .. math ::
        I_\nu(z) = i^{-\nu} J_\nu(iz),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    Examples
    ========

    >>> from sympy import besseli
    >>> from sympy.abc import z, n
    >>> besseli(n, z).diff(z)
    besseli(n - 1, z)/2 + besseli(n + 1, z)/2

    See Also
    ========

    besselj, bessely, besselk

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/

    c                 C   sV  |j rX|j rtjS |jr"|j du s,t|jr2tjS t|jrL|jdurLtjS |j	rXtj
S t|tjtjfv rrtjS | r|| | |   t||  S |jr| rt| |S |t}|rt|  t||  S |j rt|}||kr6t||S n8| \}}|dkr6td| t | t t|| S t|}||krRt||S d S ri   )rS   r   rj   rK   r    rZ   rk   r\   rl   rm   rn   r!   ro   rp   rq   rN   rs   r   rM   r#   rt   r   r   ru   r0   r0   r1   r:     s:     


"
zbesseli.evalc                 K   s(   t t t | d t|tt|  S rw   )r   r   r   rM   r"   rx   r0   r0   r1   r     s    z besseli._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r5   r   r-   r   rz   r   r0   r0   r1   r{     s    z besseli._eval_rewrite_as_besselyc                 K   s   | j | j tS r5   )r   r-   r   rQ   rx   r0   r0   r1   r}     s    zbesseli._eval_rewrite_as_jnc                 C   s   | j \}}|jr|jrdS d S r   r   r   r0   r0   r1   r     s    
zbesseli._eval_is_extended_realN)rc   rd   re   rf   r   rj   r?   r=   rh   r:   r   r{   r}   r   r0   r0   r0   r1   rN     s   '
#rN   c                   @   sR   e Zd ZdZejZej Zedd Z	dd Z
dd Zdd	 Zd
d Zdd ZdS )besselka  
    Modified Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $K$ function of order $\nu$ is defined as

    .. math ::
        K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
                   \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},

    where $I_\mu(z)$ is the modified Bessel function of the first kind.

    It is a solution of the modified Bessel equation, and linearly independent
    from $Y_\nu$.

    Examples
    ========

    >>> from sympy import besselk
    >>> from sympy.abc import z, n
    >>> besselk(n, z).diff(z)
    -besselk(n - 1, z)/2 - besselk(n + 1, z)/2

    See Also
    ========

    besselj, besseli, bessely

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/

    c                 C   sv   |j r6|j rtjS t|j du r&tjS t|j r6tjS |tjttj ttj fv rXtjS |j	rr|
 rrt| |S d S rC   )rS   r   ro   r    rl   rn   r   rp   rk   rK   rq   r   r6   r0   r0   r1   r:     s    
zbesselk.evalc                 K   s8   |j du r4ttt|  t| |t||  d S d S )NFr;   )rK   r   r   rN   rx   r0   r0   r1   ry   (  s    
z besselk._eval_rewrite_as_besselic                 K   s   | j | j }|r|tS d S r5   )ry   r-   r   rM   )r/   r8   r9   ra   air0   r0   r1   r   ,  s    z besselk._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r5   r   r   r0   r0   r1   r{   1  s    z besselk._eval_rewrite_as_besselyc                 K   s   | j | j }|r|tS d S r5   )r{   r-   r   rR   )r/   r8   r9   ra   ayr0   r0   r1   r   6  s    zbesselk._eval_rewrite_as_ync                 C   s   | j \}}|jr|jrdS d S r   r   r   r0   r0   r1   r   ;  s    
zbesselk._eval_is_extended_realN)rc   rd   re   rf   r   rj   r?   r=   rh   r:   ry   r   r{   r   r   r0   r0   r0   r1   r     s   %
r   c                   @   s$   e Zd ZdZejZejZdd ZdS )hankel1a  
    Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation.

    Examples
    ========

    >>> from sympy import hankel1
    >>> from sympy.abc import z, n
    >>> hankel1(n, z).diff(z)
    hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2

    See Also
    ========

    hankel2, besselj, bessely

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/

    c                 C   s(   | j }|jdu r$t| j | S d S rC   )r4   rD   hankel2r2   rE   rF   r0   r0   r1   rG   i  s    
zhankel1._eval_conjugateN	rc   rd   re   rf   r   rj   r?   r=   rG   r0   r0   r0   r1   r   A  s   $r   c                   @   s$   e Zd ZdZejZejZdd ZdS )r   a  
    Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation, and linearly independent from
    $H_\nu^{(1)}$.

    Examples
    ========

    >>> from sympy import hankel2
    >>> from sympy.abc import z, n
    >>> hankel2(n, z).diff(z)
    hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2

    See Also
    ========

    hankel1, besselj, bessely

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/

    c                 C   s(   | j }|jdu r$t| j | S d S rC   )r4   rD   r   r2   rE   rF   r0   r0   r1   rG     s    
zhankel2._eval_conjugateNr   r0   r0   r0   r1   r   o  s   %r   c                    s   t   fdd}|S )Nc                    s   |j r | ||S d S r5   )rK   r   fnr0   r1   g  s    zassume_integer_order.<locals>.gr   )r   r   r0   r   r1   assume_integer_order  s    r   c                   @   s*   e Zd ZdZdd Zdd Zd
ddZd	S )SphericalBesselBasea-  
    Base class for spherical Bessel functions.

    These are thin wrappers around ordinary Bessel functions,
    since spherical Bessel functions differ from the ordinary
    ones just by a slight change in order.

    To use this class, define the ``_eval_evalf()`` and ``_expand()`` methods.

    c                 K   s   t ddS )z@ Expand self into a polynomial. Nu is guaranteed to be Integer. Z	expansionNr   r/   r]   r0   r0   r1   _expand  s    zSphericalBesselBase._expandc                 K   s   | j jr| jf i |S | S r5   )r2   
is_Integerr   r   r0   r0   r1   r[     s    z%SphericalBesselBase._eval_expand_funcr;   c                 C   s:   |dkrt | || | jd | j| | jd  | j  S r<   )r	   r>   r2   r4   r@   r0   r0   r1   rB     s
    
zSphericalBesselBase.fdiffN)r;   )rc   rd   re   rf   r   r[   rB   r0   r0   r0   r1   r     s   r   c                 C   s8   t | |t| tj| d  t |  d | t|  S Nr3   )r(   r   r   rr   r   rv   r9   r0   r0   r1   _jn  s    $r   c                 C   s8   t j| d  t|  d | t| t| |t|  S r   )r   rr   r(   r   r   r   r0   r0   r1   _yn  s    $r   c                   @   sD   e Zd ZdZedd Zdd Zdd Zdd	 Zd
d Z	dd Z
dS )rQ   a  
    Spherical Bessel function of the first kind.

    Explanation
    ===========

    This function is a solution to the spherical Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
          + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.

    It can be defined as

    .. math ::
        j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    The spherical Bessel functions of integral order are
    calculated using the formula:

    .. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},

    where the coefficients $f_n(z)$ are available as
    :func:`sympy.polys.orthopolys.spherical_bessel_fn`.

    Examples
    ========

    >>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(jn(0, z)))
    sin(z)/z
    >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
    True
    >>> expand_func(jn(3, z))
    (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
    >>> jn(nu, z).rewrite(besselj)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
    >>> jn(nu, z).rewrite(bessely)
    (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
    >>> jn(2, 5.2+0.3j).evalf(20)
    0.099419756723640344491 - 0.054525080242173562897*I

    See Also
    ========

    besselj, bessely, besselk, yn

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 C   sD   |j r*|j rtjS |jr*|jr$tjS tjS |tjtjfv r@tjS d S r5   )	rS   r   rj   rK   rZ   rk   rl   rp   ro   r6   r0   r0   r1   r:     s    zjn.evalc                 K   s    t td|  t|tj | S rw   )r   r   rM   r   r|   rx   r0   r0   r1   r     s    zjn._eval_rewrite_as_besseljc                 K   s,   t j| ttd|   t| t j | S rw   )r   rr   r   r   rz   r|   rx   r0   r0   r1   r{     s    zjn._eval_rewrite_as_besselyc                 K   s   t j| t| d | S r   )r   rr   rR   rx   r0   r0   r1   r     s    zjn._eval_rewrite_as_ync                 K   s   t | j| jS r5   )r   r2   r4   r   r0   r0   r1   r     s    z
jn._expandc                 C   s   | j jr| t|S d S r5   r2   r   r   rM   _eval_evalfr/   precr0   r0   r1   r      s    zjn._eval_evalfN)rc   rd   re   rf   rh   r:   r   r{   r   r   r   r0   r0   r0   r1   rQ     s   9
rQ   c                   @   s@   e Zd ZdZedd Zedd Zdd Zdd	 Zd
d Z	dS )rR   a  
    Spherical Bessel function of the second kind.

    Explanation
    ===========

    This function is another solution to the spherical Bessel equation, and
    linearly independent from $j_n$. It can be defined as

    .. math ::
        y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),

    where $Y_\nu(z)$ is the Bessel function of the second kind.

    For integral orders $n$, $y_n$ is calculated using the formula:

    .. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(yn(0, z)))
    -cos(z)/z
    >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
    True
    >>> yn(nu, z).rewrite(besselj)
    (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
    >>> yn(nu, z).rewrite(bessely)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
    >>> yn(2, 5.2+0.3j).evalf(20)
    0.18525034196069722536 + 0.014895573969924817587*I

    See Also
    ========

    besselj, bessely, besselk, jn

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 K   s0   t j|d  ttd|   t| t j | S rX   )r   rr   r   r   rM   r|   rx   r0   r0   r1   r   T  s    zyn._eval_rewrite_as_besseljc                 K   s    t td|  t|tj | S rw   )r   r   rz   r   r|   rx   r0   r0   r1   r{   X  s    zyn._eval_rewrite_as_besselyc                 K   s   t j|d  t| d | S r   )r   rr   rQ   rx   r0   r0   r1   r}   \  s    zyn._eval_rewrite_as_jnc                 K   s   t | j| jS r5   )r   r2   r4   r   r0   r0   r1   r   _  s    z
yn._expandc                 C   s   | j jr| t|S d S r5   )r2   r   r   rz   r   r   r0   r0   r1   r   b  s    zyn._eval_evalfN)
rc   rd   re   rf   r   r   r{   r}   r   r   r0   r0   r0   r1   rR   %  s   .

rR   c                   @   sL   e Zd Zedd Zedd Zdd Zdd Zd	d
 Zdd Z	dd Z
dS )SphericalHankelBasec                 K   sN   | j }ttd|  t|tj ||t tj|d   t| tj |   S r<   )_hankel_kind_signr   r   rM   r   r|   r   rr   r/   r8   r9   ra   hksr0   r0   r1   r   i  s    &z,SphericalHankelBase._eval_rewrite_as_besseljc                 K   sJ   | j }ttd|  tj| t| tj | |t t|tj |   S rw   )r   r   r   r   rr   rz   r|   r   r   r0   r0   r1   r{   r  s    (z,SphericalHankelBase._eval_rewrite_as_besselyc                 K   s(   | j }t||t|t t||  S r5   )r   rQ   r   rR   r   r   r0   r0   r1   r   {  s    z'SphericalHankelBase._eval_rewrite_as_ync                 K   s(   | j }t|||t t||t  S r5   )r   rQ   r   rR   r   r   r0   r0   r1   r}     s    z'SphericalHankelBase._eval_rewrite_as_jnc                 K   sJ   | j jr| jf i |S | j }| j}| j}t|||t t||  S d S r5   )r2   r   r   r4   r   rQ   r   rR   )r/   r]   r8   r9   r   r0   r0   r1   r[     s    z%SphericalHankelBase._eval_expand_funcc                 K   s2   | j }| j}| j}t|||t t||   S r5   )r2   r4   r   r   r   r   expand)r/   r]   rv   r9   r   r0   r0   r1   r     s    
zSphericalHankelBase._expandc                 C   s   | j jr| t|S d S r5   r   r   r0   r0   r1   r     s    zSphericalHankelBase._eval_evalfN)rc   rd   re   r   r   r{   r   r}   r[   r   r   r0   r0   r0   r1   r   g  s   

	r   c                   @   s"   e Zd ZdZejZedd ZdS )rO   a  
    Spherical Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(1)$ is calculated using the formula:

    .. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn1(nu, z)))
    jn(nu, z) + I*yn(nu, z)
    >>> print(expand_func(hn1(0, z)))
    sin(z)/z - I*cos(z)/z
    >>> print(expand_func(hn1(1, z)))
    -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
    >>> hn1(nu, z).rewrite(jn)
    (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn1(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
    >>> hn1(nu, z).rewrite(hankel1)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2

    See Also
    ========

    hn2, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 K   s   t td|  t|| S rw   )r   r   r   rx   r0   r0   r1   _eval_rewrite_as_hankel1  s    zhn1._eval_rewrite_as_hankel1N)	rc   rd   re   rf   r   rj   r   r   r   r0   r0   r0   r1   rO     s   0rO   c                   @   s$   e Zd ZdZej Zedd ZdS )rP   a  
    Spherical Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(2)$ is calculated using the formula:

    .. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn2(nu, z)))
    jn(nu, z) - I*yn(nu, z)
    >>> print(expand_func(hn2(0, z)))
    sin(z)/z + I*cos(z)/z
    >>> print(expand_func(hn2(1, z)))
    I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
    >>> hn2(nu, z).rewrite(hankel2)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
    >>> hn2(nu, z).rewrite(jn)
    -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn2(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)

    See Also
    ========

    hn1, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 K   s   t td|  t|| S rw   )r   r   r   rx   r0   r0   r1   _eval_rewrite_as_hankel2  s    zhn2._eval_rewrite_as_hankel2N)	rc   rd   re   rf   r   rj   r   r   r   r0   r0   r0   r1   rP     s   0rP   sympy   c                    s  ddl m} dkrTddlm  ddlm} || fddtd|d D S d	krdd
lm zddl	m
 fdd}W q ty   ddl	m fdd}Y q0 ntdfdd}| }|||}|g}	t|d D ]}
|||| }|	| q|	S )a  
    Zeros of the spherical Bessel function of the first kind.

    Explanation
    ===========

    This returns an array of zeros of $jn$ up to the $k$-th zero.

    * method = "sympy": uses `mpmath.besseljzero
      <http://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_
    * method = "scipy": uses the
      `SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
      and
      `newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
      to find all
      roots, which is faster than computing the zeros using a general
      numerical solver, but it requires SciPy and only works with low
      precision floating point numbers. (The function used with
      method="sympy" is a recent addition to mpmath; before that a general
      solver was used.)

    Examples
    ========

    >>> from sympy import jn_zeros
    >>> jn_zeros(2, 4, dps=5)
    [5.7635, 9.095, 12.323, 15.515]

    See Also
    ========

    jn, yn, besselj, besselk, bessely

    Parameters
    ==========

    n : integer
        order of Bessel function

    k : integer
        number of zeros to return


    r   )r   r   )besseljzero)dps_to_precc                    s0   g | ](}t  td  t|qS )g      ?)r   _from_mpmathr   
_to_mpmathint).0l)r   rv   r   r0   r1   
<listcomp>C  s   zjn_zeros.<locals>.<listcomp>r3   scipy)newton)spherical_jnc                    s
    | S r5   r0   rU   )rv   r   r0   r1   <lambda>J      zjn_zeros.<locals>.<lambda>)sph_jnc                    s    | d d S )Nr   r0   r   )rv   r   r0   r1   r   M  r   Unknown method.c                    s     dkr| |}nt d|S )Nr   r   r   )r^   rU   r   )methodr   r0   r1   solverQ  s    zjn_zeros.<locals>.solver)mathr   mpmathr   mpmath.libmp.libmpfr   r   Zscipy.optimizer   Zscipy.specialr   ImportErrorr   r   r   )rv   r   r   dpsZmath_pir   r^   r   r   rootsir0   )r   r   rv   r   r   r   r   r1   jn_zeros  s2    -
r   c                   @   s4   e Zd ZdZdd Zdd ZdddZdd	d
ZdS )AiryBasezg
    Abstract base class for Airy functions.

    This class is meant to reduce code duplication.

    c                 C   s   |  | jd  S Nr   )r   r-   rE   r.   r0   r0   r1   rG   l  s    zAiryBase._eval_conjugatec                 C   s   | j d jS r   )r-   r   r.   r0   r0   r1   r   o  s    zAiryBase._eval_is_extended_realTc                 K   sL   | j d }| }| j}|||| d }t||||  d }||fS )Nr   r;   )r-   rE   r   r   )r/   deepr]   r9   Zzcr^   uvr0   r0   r1   as_real_imagr  s    
zAiryBase.as_real_imagc                 K   s&   | j f d|i|\}}||tj  S )Nr   )r   r   ImaginaryUnit)r/   r   r]   re_partim_partr0   r0   r1   _eval_expand_complexz  s    zAiryBase._eval_expand_complexN)T)T)rc   rd   re   rf   rG   r   r   r   r0   r0   r0   r1   r   d  s
   
r   c                   @   s^   e Zd ZdZdZdZedd ZdddZe	e
dd	 Zd
d Zdd Zdd Zdd ZdS )airyaia  
    The Airy function $\operatorname{Ai}$ of the first kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Ai}(z) := \frac{1}{\pi}
        \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyai
    >>> from sympy.abc import z

    >>> airyai(z)
    airyai(z)

    Several special values are known:

    >>> airyai(0)
    3**(1/3)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airyai(oo)
    0
    >>> airyai(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyai(z))
    airyai(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyai(z), z)
    airyaiprime(z)
    >>> diff(airyai(z), z, 2)
    z*airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyai(z), z, 0, 3)
    3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyai(-2).evalf(50)
    0.22740742820168557599192443603787379946077222541710

    Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyai(z).rewrite(hyper)
    -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r3   Tc                 C   s   |j r^|tju rtjS |tju r&tjS |tju r6tjS |jr^tjdtdd t	tdd  S |jrtjdtdd t	tdd  S d S )N   r;   )
	is_Numberr   rn   ro   rk   rp   rS   rj   r   r$   r7   r   r0   r0   r1   r:     s    


"zairyai.evalc                 C   s$   |dkrt | jd S t| |d S Nr3   r   )airyaiprimer-   r	   r@   r0   r0   r1   rB     s    zairyai.fdiffc                 G   s:  | dk rt jS t|}t|dkr|d }td| |   td| | d   tt| tdd tdd   t|  t	| d tdd  tt| tdd tdd  t| d  t	| d tdd   | S t j
dtdd t  t	| t j
 t d  ttddt | t j
   t|  td| |   S d S )Nr   r3   r   r   r;      )r   rk   r   lenr   r   r   r   r   r$   rj   rv   rU   previous_termsr   r0   r0   r1   taylor_term  s"    L@Hzairyai.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr\|t|  t| || t|||   S d S Nr3   r   r;   r   r   r    r\   r   rM   r/   r9   ra   otttrV   r0   r0   r1   r     s
    


zairyai._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jrX|t| t| || t|||   S |t||t| ||  |t||  t|||    S d S r   r   r   r    rZ   r   rN   r   r0   r0   r1   ry     s    


*zairyai._eval_rewrite_as_besselic                 K   s~   t jdtdd ttdd  }|tddttdd  }|tg tddg|d d  |tg tddg|d d   S )Nr   r;   r3   	   r   )r   rj   r   r$   r   r'   r/   r9   ra   Zpf1Zpf2r0   r0   r1   _eval_rewrite_as_hyper  s    "zairyai._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S 	Nr   r3   r   )excludedmrv   r   )r-   r   r   popr   matchrK   r   r|   rj   r   r   airybir/   r]   r   Zsymbsr9   r   r  r	  rv   Mpfnewargr0   r0   r1   r[     s$    

$zairyai._eval_expand_funcN)r3   rc   rd   re   rf   nargs
unbranchedrh   r:   rB   staticmethodr   r   r   ry   r  r[   r0   r0   r0   r1   r     s   X

	r   c                   @   s^   e Zd ZdZdZdZedd ZdddZe	e
dd	 Zd
d Zdd Zdd Zdd ZdS )r  a  
    The Airy function $\operatorname{Bi}$ of the second kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Bi}(z) := \frac{1}{\pi}
                 \int_0^\infty
                   \exp\left(-\frac{t^3}{3} + z t\right)
                   + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybi
    >>> from sympy.abc import z

    >>> airybi(z)
    airybi(z)

    Several special values are known:

    >>> airybi(0)
    3**(5/6)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airybi(oo)
    oo
    >>> airybi(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybi(z))
    airybi(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybi(z), z)
    airybiprime(z)
    >>> diff(airybi(z), z, 2)
    z*airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybi(z), z, 0, 3)
    3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybi(-2).evalf(50)
    -0.41230258795639848808323405461146104203453483447240

    Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybi(z).rewrite(hyper)
    3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r3   Tc                 C   s   |j r^|tju rtjS |tju r&tjS |tju r6tjS |jr^tjdtdd t	tdd  S |jrtjdtdd t	tdd  S d S )Nr   r3      r;   )
r   r   rn   ro   rp   rk   rS   rj   r   r$   r   r0   r0   r1   r:     s    


"zairybi.evalc                 C   s$   |dkrt | jd S t| |d S r   )airybiprimer-   r	   r@   r0   r0   r1   rB     s    zairybi.fdiffc                 G   s  | dk rt jS t|}t|dkr|d }td| tttddt | t j	   t
| t j	 t d  | t j	 tttddt | t j   t
| d t d   | S t j	tddt  t| t j	 t d  tttddt | t j	   t
|  td| |   S d S )Nr   r3   r   r   r;   r  )r   rk   r   r   r   r   r   r   r   rj   r   r   r|   r   r$   r   r0   r0   r1   r     s    @<Hzairybi.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr\t| d t| || t|||   S d S r   r   r   r0   r0   r1   r     s
    


zairybi._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jr\t|td t| || t|||   S t||}t|| }t||t| ||  || t|||    S d S r   r  r/   r9   ra   r   r  rV   r   r   r0   r0   r1   ry     s    


.
zairybi._eval_rewrite_as_besselic                 K   sz   t jtddttdd  }|tdd ttdd }|tg tddg|d d  |tg tddg|d d   S )Nr   r  r;   r3   r  r   )r   rj   r   r$   r   r'   r  r0   r0   r1   r    s    zairybi._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tjt	dtj
|
  t| tj
|
 t|   S d S r  )r-   r   r   r
  r   r  rK   r   r|   r   rj   r   r  r  r0   r0   r1   r[     s$    

$zairybi._eval_expand_funcN)r3   r  r0   r0   r0   r1   r  +  s   Z

r  c                   @   sV   e Zd ZdZdZdZedd ZdddZdd	 Z	d
d Z
dd Zdd Zdd ZdS )r   a+  
    The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyaiprime
    >>> from sympy.abc import z

    >>> airyaiprime(z)
    airyaiprime(z)

    Several special values are known:

    >>> airyaiprime(0)
    -3**(2/3)/(3*gamma(1/3))
    >>> from sympy import oo
    >>> airyaiprime(oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyaiprime(z))
    airyaiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyaiprime(z), z)
    z*airyai(z)
    >>> diff(airyaiprime(z), z, 2)
    z*airyaiprime(z) + airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyaiprime(z), z, 0, 3)
    -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyaiprime(-2).evalf(50)
    0.61825902074169104140626429133247528291577794512415

    Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyaiprime(z).rewrite(hyper)
    3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r3   Tc                 C   sR   |j r&|tju rtjS |tju r&tjS |jrNtjdtdd ttdd  S d S )Nr   r3   )	r   r   rn   ro   rk   rS   rr   r   r$   r   r0   r0   r1   r:   1  s    

zairyaiprime.evalc                 C   s.   |dkr | j d t| j d  S t| |d S r   )r-   r   r	   r@   r0   r0   r1   rB   <  s    zairyaiprime.fdiffc                 C   sR   | j d |}t| tj|dd}W d    n1 s<0    Y  t||S Nr   r3   )
derivative)r-   r   r*   r)   r   r   r   r/   r   r9   resr0   r0   r1   r   B  s    
,zairyaiprime._eval_evalfc                 K   sP   t dd}t| t dd}t|jrL|d t| || t|||   S d S Nr;   r   )r   r   r    r\   rM   r/   r9   ra   r  rV   r0   r0   r1   r   H  s    

z$airyaiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jrP|d t||t| |  S t|t dd}t||}t|| }||d | t|||  |t| ||    S d S r   )r   r   r    rZ   rN   r  r0   r0   r1   ry   N  s    



z$airyaiprime._eval_rewrite_as_besselic                 K   s   |d ddt dd  tt dd  }dtddtt dd  }|tg t ddg|d d  |tg t ddg|d d   S )Nr;   r   r3      r  )r   r$   r   r'   r  r0   r0   r1   r  Z  s    (z"airyaiprime._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S r  )r-   r   r   r
  r   r  rK   r   r|   rj   r   r   r  r  r0   r0   r1   r[   _  s$    

$zairyaiprime._eval_expand_funcN)r3   rc   rd   re   rf   r  r  rh   r:   rB   r   r   ry   r  r[   r0   r0   r0   r1   r     s   Q


r   c                   @   sV   e Zd ZdZdZdZedd ZdddZdd	 Z	d
d Z
dd Zdd Zdd ZdS )r  a<  
    The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybiprime
    >>> from sympy.abc import z

    >>> airybiprime(z)
    airybiprime(z)

    Several special values are known:

    >>> airybiprime(0)
    3**(1/6)/gamma(1/3)
    >>> from sympy import oo
    >>> airybiprime(oo)
    oo
    >>> airybiprime(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybiprime(z))
    airybiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybiprime(z), z)
    z*airybi(z)
    >>> diff(airybiprime(z), z, 2)
    z*airybiprime(z) + airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybiprime(z), z, 0, 3)
    3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybiprime(-2).evalf(50)
    0.27879516692116952268509756941098324140300059345163

    Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybiprime(z).rewrite(hyper)
    3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r3   Tc                 C   s~   |j rX|tju rtjS |tju r&tjS |tju r6tjS |jrXdtdd ttdd S |jrzdtdd ttdd S d S )Nr   r3   r  )	r   r   rn   ro   rp   rk   rS   r   r$   r   r0   r0   r1   r:     s    


zairybiprime.evalc                 C   s.   |dkr | j d t| j d  S t| |d S r   )r-   r  r	   r@   r0   r0   r1   rB     s    zairybiprime.fdiffc                 C   sR   | j d |}t| tj|dd}W d    n1 s<0    Y  t||S r  )r-   r   r*   r)   r  r   r   r  r0   r0   r1   r     s    
,zairybiprime._eval_evalfc                 K   sR   t dd}|t| t dd }t|jrN| td t| |t||  S d S r  r   r  r0   r0   r1   r     s    

z$airybiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jrT|td t| |t||  S t|t dd}t||}t|| }t||t| ||  |d | t|||    S d S r   r  r  r0   r0   r1   ry     s    


"
z$airybiprime._eval_rewrite_as_besselic                 K   s|   |d dt dd ttdd  }t ddttdd }|tg tddg|d d  |tg tddg|d d   S )Nr;   r   r  r3   r  r  )r   r$   r   r'   r  r0   r0   r1   r    s    $z"airybiprime._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tjt	d|
tj
  t| |
tj
 t|   S d S r  )r-   r   r   r
  r   r  rK   r   r|   r   rj   r   r  r  r0   r0   r1   r[     s$    

$zairybiprime._eval_expand_funcN)r3   r  r0   r0   r0   r1   r  y  s   S

r  c                   @   sF   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dS )marcumqa  
    The Marcum Q-function.

    Explanation
    ===========

    The Marcum Q-function is defined by the meromorphic continuation of

    .. math::
        Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx

    Examples
    ========

    >>> from sympy import marcumq
    >>> from sympy.abc import m, a, b
    >>> marcumq(m, a, b)
    marcumq(m, a, b)

    Special values:

    >>> marcumq(m, 0, b)
    uppergamma(m, b**2/2)/gamma(m)
    >>> marcumq(0, 0, 0)
    0
    >>> marcumq(0, a, 0)
    1 - exp(-a**2/2)
    >>> marcumq(1, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2
    >>> marcumq(2, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)

    Differentiation with respect to $a$ and $b$ is supported:

    >>> from sympy import diff
    >>> diff(marcumq(m, a, b), a)
    a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
    >>> diff(marcumq(m, a, b), b)
    -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Marcum_Q-function
    .. [2] http://mathworld.wolfram.com/MarcumQ-Function.html

    c                 C   sZ  |t ju r@|t ju r$|t ju r$t jS t||d t j t| S |t ju rn|t ju rnddt|d t j   S ||kr|t ju rdt|d  td|d   t j S |dkrt jt jt|d   td|d   t|d  td|d   S |jr,|jr|jrt jS t||d t j t| S |jrV|jrVddt|d t j   S d S r~   )	r   rk   r&   r|   r$   r   rj   rN   rS   )r7   r	  rV   r   r0   r0   r1   r:   N  s"    

&Dzmarcumq.evalr;   c                 C   s   | j \}}}|dkr6|t||| td| ||  S |dkr||  ||d   t|d |d   d  t|d ||  S t| |d S )Nr;   r3   r   )r-   r   r   rN   r	   )r/   rA   r	  rV   r   r0   r0   r1   rB   f  s    "Bzmarcumq.fdiffc                 K   sj   ddl m} |dtd}|d|  ||| t|d |d   d  t|d ||  ||tjg S )Nr   )IntegralrU   r3   r;   )sympy.integrals.integralsr!  getr   r   rN   r   ro   )r/   r	  rV   r   ra   r!  rU   r0   r0   r1   _eval_rewrite_as_Integralo  s
    
@z!marcumq._eval_rewrite_as_Integralc                 K   sb   ddl m} |dtd}t|d |d   d ||| | t|||  |d| tjg S )Nr   )Sumr   r;   r3   )sympy.concrete.summationsr%  r#  r   r   rN   r   ro   )r/   r	  rV   r   ra   r%  r   r0   r0   r1   _eval_rewrite_as_Sumu  s    zmarcumq._eval_rewrite_as_Sumc                    s    |kr|dkr4dt  d  td d   d S |jr|dkrt fddtd|D }tjt  d  td d  d  t  d  |  S d S )Nr3   r;   r   c                    s   g | ]}t | d  qS )r;   )rN   )r   r   rV   r0   r1   r     r   z4marcumq._eval_rewrite_as_besseli.<locals>.<listcomp>)r   rN   r   sumr   r   r|   )r/   r	  rV   r   ra   r   r0   r(  r1   ry   z  s    $z marcumq._eval_rewrite_as_besselic                 C   s   t dd | jD rdS d S )Nc                 s   s   | ]}|j V  qd S r5   )rS   )r   r   r0   r0   r1   	<genexpr>  r   z(marcumq._eval_is_zero.<locals>.<genexpr>T)allr-   r.   r0   r0   r1   _eval_is_zero  s    zmarcumq._eval_is_zeroN)r;   )rc   rd   re   rf   rh   r:   rB   r$  r'  ry   r,  r0   r0   r0   r1   r     s   0

	r   N)r   r   )T	functoolsr   
sympy.corer   Zsympy.core.addr   sympy.core.cacher   sympy.core.exprr   sympy.core.functionr   r	   r
   sympy.core.logicr   r   sympy.core.numbersr   r   r   sympy.core.powerr   sympy.core.symbolr   r   sympy.core.sympifyr   (sympy.functions.combinatorial.factorialsr   (sympy.functions.elementary.trigonometricr   r   r   r   #sympy.functions.elementary.integersr   &sympy.functions.elementary.exponentialr   r   (sympy.functions.elementary.miscellaneousr   r   r   $sympy.functions.elementary.complexesr   r    r!   r"   r#   'sympy.functions.special.gamma_functionsr$   r%   r&   sympy.functions.special.hyperr'   Zsympy.polys.orthopolysr(   r   r)   r*   r+   rM   rz   rN   r   r   r   r   r   r   r   rQ   rR   r   rO   rP   r   r   r   r  r   r  r   r0   r0   r0   r1   <module>   sb   F " `R./XB988
T - 2  %