a
    RG5d8                     @   s   d Z ddlmZmZ ddlmZ ddlmZmZm	Z	m
Z
mZmZmZmZ ddlmZ ddlmZ ddd	Zdd
dZdd Zdd Zdd Zdd Zdd ZdS )zl
Convolution (using **FFT**, **NTT**, **FWHT**), Subset Convolution,
Covering Product, Intersecting Product
    )Ssympify
expand_mul)fftifftnttinttfwhtifwhtmobius_transforminverse_mobius_transform)iterable)as_intNc                    s   t |  dk rtd|r dnd}|r,dnd}tdd |||fD dkrVtddurt| |d	 stS  fd
dt D S |rt| |n|rt| |nt| ||d sĈS  fddt D S )a  
    Performs convolution by determining the type of desired
    convolution using hints.

    Exactly one of ``dps``, ``prime``, ``dyadic``, ``subset`` arguments
    should be specified explicitly for identifying the type of convolution,
    and the argument ``cycle`` can be specified optionally.

    For the default arguments, linear convolution is performed using **FFT**.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.
    cycle : Integer
        Specifies the length for doing cyclic convolution.
    dps : Integer
        Specifies the number of decimal digits for precision for
        performing **FFT** on the sequence.
    prime : Integer
        Prime modulus of the form `(m 2^k + 1)` to be used for
        performing **NTT** on the sequence.
    dyadic : bool
        Identifies the convolution type as dyadic (*bitwise-XOR*)
        convolution, which is performed using **FWHT**.
    subset : bool
        Identifies the convolution type as subset convolution.

    Examples
    ========

    >>> from sympy import convolution, symbols, S, I
    >>> u, v, w, x, y, z = symbols('u v w x y z')

    >>> convolution([1 + 2*I, 4 + 3*I], [S(5)/4, 6], dps=3)
    [1.25 + 2.5*I, 11.0 + 15.8*I, 24.0 + 18.0*I]
    >>> convolution([1, 2, 3], [4, 5, 6], cycle=3)
    [31, 31, 28]

    >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1)
    [1283, 19351, 14219]
    >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1, cycle=2)
    [15502, 19351]

    >>> convolution([u, v], [x, y, z], dyadic=True)
    [u*x + v*y, u*y + v*x, u*z, v*z]
    >>> convolution([u, v], [x, y, z], dyadic=True, cycle=2)
    [u*x + u*z + v*y, u*y + v*x + v*z]

    >>> convolution([u, v, w], [x, y, z], subset=True)
    [u*x, u*y + v*x, u*z + w*x, v*z + w*y]
    >>> convolution([u, v, w], [x, y, z], subset=True, cycle=3)
    [u*x + v*z + w*y, u*y + v*x, u*z + w*x]

    r   z6The length for cyclic convolution must be non-negativeTNc                 s   s   | ]}|d uV  qd S N ).0xr   r   W/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/discrete/convolutions.py	<genexpr>P       zconvolution.<locals>.<genexpr>   z0Ambiguity in determining the type of convolution)primec                    s"   g | ]}t |d    qS r   sumr   iclsr   r   r   
<listcomp>U   r   zconvolution.<locals>.<listcomp>)dpsc                    s   g | ]}t |d   qS r   r   r   )r   r   r   r   r    ^   r   )	r   
ValueErrorr   	TypeErrorconvolution_nttrangeconvolution_fwhtconvolution_subsetconvolution_fft)abcycler!   r   Zdyadicsubsetr   r   r   convolution   s     :"r-   c                 C   s   | dd |dd  } }t | t | d  }}|dkrR||d @ rRd|  }| tjg|t |   7 } |tjg|t |  7 }t| |t|| } }dd t| |D } t| |d| } | S )a  
    Performs linear convolution using Fast Fourier Transform.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.
    dps : Integer
        Specifies the number of decimal digits for precision.

    Examples
    ========

    >>> from sympy import S, I
    >>> from sympy.discrete.convolutions import convolution_fft

    >>> convolution_fft([2, 3], [4, 5])
    [8, 22, 15]
    >>> convolution_fft([2, 5], [6, 7, 3])
    [12, 44, 41, 15]
    >>> convolution_fft([1 + 2*I, 4 + 3*I], [S(5)/4, 6])
    [5/4 + 5*I/2, 11 + 63*I/4, 24 + 18*I]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Convolution_theorem
    .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29

    Nr   r      c                 S   s   g | ]\}}t || qS r   r   r   r   yr   r   r   r       r   z#convolution_fft.<locals>.<listcomp>)len
bit_lengthr   Zeror   zipr   )r)   r*   r!   nmr   r   r   r(   g   s    !r(   c                    s   | dd |dd t |  } } t| t| d  }}|dkr\||d @ r\d|  }| dg|t|   7 } |dg|t|  7 }t|  t|  } } fddt| |D } t|  d| } | S )a=  
    Performs linear convolution using Number Theoretic Transform.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.
    prime : Integer
        Prime modulus of the form `(m 2^k + 1)` to be used for performing
        **NTT** on the sequence.

    Examples
    ========

    >>> from sympy.discrete.convolutions import convolution_ntt
    >>> convolution_ntt([2, 3], [4, 5], prime=19*2**10 + 1)
    [8, 22, 15]
    >>> convolution_ntt([2, 5], [6, 7, 3], prime=19*2**10 + 1)
    [12, 44, 41, 15]
    >>> convolution_ntt([333, 555], [222, 666], prime=19*2**10 + 1)
    [15555, 14219, 19404]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Convolution_theorem
    .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29

    Nr   r   r.   c                    s   g | ]\}}||   qS r   r   r/   pr   r   r       r   z#convolution_ntt.<locals>.<listcomp>)r   r1   r2   r   r4   r	   )r)   r*   r   r5   r6   r   r7   r   r$      s     $r$   c                 C   s   | r|sg S | dd |dd  } }t t| t|}||d @ rPd|  }| tjg|t|   7 } |tjg|t|  7 }t| t| } }dd t| |D } t| } | S )a  
    Performs dyadic (*bitwise-XOR*) convolution using Fast Walsh Hadamard
    Transform.

    The convolution is automatically padded to the right with zeros, as the
    *radix-2 FWHT* requires the number of sample points to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.

    Examples
    ========

    >>> from sympy import symbols, S, I
    >>> from sympy.discrete.convolutions import convolution_fwht

    >>> u, v, x, y = symbols('u v x y')
    >>> convolution_fwht([u, v], [x, y])
    [u*x + v*y, u*y + v*x]

    >>> convolution_fwht([2, 3], [4, 5])
    [23, 22]
    >>> convolution_fwht([2, 5 + 4*I, 7], [6*I, 7, 3 + 4*I])
    [56 + 68*I, -10 + 30*I, 6 + 50*I, 48 + 32*I]

    >>> convolution_fwht([S(33)/7, S(55)/6, S(7)/4], [S(2)/3, 5])
    [2057/42, 1870/63, 7/6, 35/4]

    References
    ==========

    .. [1] https://www.radioeng.cz/fulltexts/2002/02_03_40_42.pdf
    .. [2] https://en.wikipedia.org/wiki/Hadamard_transform

    Nr   r.   c                 S   s   g | ]\}}t || qS r   r   r/   r   r   r   r      r   z$convolution_fwht.<locals>.<listcomp>)maxr1   r2   r   r3   r
   r4   r   r)   r*   r5   r   r   r   r&      s    (r&   c              	   C   s  | r|sg S t | rt |s$tddd | D } dd |D }tt| t|}||d @ rjd|  }| tjg|t|   7 } |tjg|t|  7 }tjg| }t|D ]f}|}|dkr||  t| | |||A   7  < |d |@ }q||  t| | |||A   7  < q|S )a  
    Performs Subset Convolution of given sequences.

    The indices of each argument, considered as bit strings, correspond to
    subsets of a finite set.

    The sequence is automatically padded to the right with zeros, as the
    definition of subset based on bitmasks (indices) requires the size of
    sequence to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.

    Examples
    ========

    >>> from sympy import symbols, S
    >>> from sympy.discrete.convolutions import convolution_subset
    >>> u, v, x, y, z = symbols('u v x y z')

    >>> convolution_subset([u, v], [x, y])
    [u*x, u*y + v*x]
    >>> convolution_subset([u, v, x], [y, z])
    [u*y, u*z + v*y, x*y, x*z]

    >>> convolution_subset([1, S(2)/3], [3, 4])
    [3, 6]
    >>> convolution_subset([1, 3, S(5)/7], [7])
    [7, 21, 5, 0]

    References
    ==========

    .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf

    z3Expected a sequence of coefficients for convolutionc                 S   s   g | ]}t |qS r   r   r   argr   r   r   r    G  r   z&convolution_subset.<locals>.<listcomp>c                 S   s   g | ]}t |qS r   r;   r<   r   r   r   r    H  r   r   r.   r   )	r   r#   r9   r1   r2   r   r3   r%   r   )r)   r*   r5   r   masksmaskr   r   r   r'     s&    )$&r'   c                 C   s   | r|sg S | dd |dd  } }t t| t|}||d @ rPd|  }| tjg|t|   7 } |tjg|t|  7 }t| t| } }dd t| |D } t| } | S )a  
    Returns the covering product of given sequences.

    The indices of each argument, considered as bit strings, correspond to
    subsets of a finite set.

    The covering product of given sequences is a sequence which contains
    the sum of products of the elements of the given sequences grouped by
    the *bitwise-OR* of the corresponding indices.

    The sequence is automatically padded to the right with zeros, as the
    definition of subset based on bitmasks (indices) requires the size of
    sequence to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which covering product is to be obtained.

    Examples
    ========

    >>> from sympy import symbols, S, I, covering_product
    >>> u, v, x, y, z = symbols('u v x y z')

    >>> covering_product([u, v], [x, y])
    [u*x, u*y + v*x + v*y]
    >>> covering_product([u, v, x], [y, z])
    [u*y, u*z + v*y + v*z, x*y, x*z]

    >>> covering_product([1, S(2)/3], [3, 4 + 5*I])
    [3, 26/3 + 25*I/3]
    >>> covering_product([1, 3, S(5)/7], [7, 8])
    [7, 53, 5, 40/7]

    References
    ==========

    .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf

    Nr   r.   c                 S   s   g | ]\}}t || qS r   r   r/   r   r   r   r      r   z$covering_product.<locals>.<listcomp>r9   r1   r2   r   r3   r   r4   r   r:   r   r   r   covering_producte  s    ,rA   c                 C   s   | r|sg S | dd |dd  } }t t| t|}||d @ rPd|  }| tjg|t|   7 } |tjg|t|  7 }t| ddt|dd } }dd t| |D } t| dd} | S )a  
    Returns the intersecting product of given sequences.

    The indices of each argument, considered as bit strings, correspond to
    subsets of a finite set.

    The intersecting product of given sequences is the sequence which
    contains the sum of products of the elements of the given sequences
    grouped by the *bitwise-AND* of the corresponding indices.

    The sequence is automatically padded to the right with zeros, as the
    definition of subset based on bitmasks (indices) requires the size of
    sequence to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which intersecting product is to be obtained.

    Examples
    ========

    >>> from sympy import symbols, S, I, intersecting_product
    >>> u, v, x, y, z = symbols('u v x y z')

    >>> intersecting_product([u, v], [x, y])
    [u*x + u*y + v*x, v*y]
    >>> intersecting_product([u, v, x], [y, z])
    [u*y + u*z + v*y + x*y + x*z, v*z, 0, 0]

    >>> intersecting_product([1, S(2)/3], [3, 4 + 5*I])
    [9 + 5*I, 8/3 + 10*I/3]
    >>> intersecting_product([1, 3, S(5)/7], [7, 8])
    [327/7, 24, 0, 0]

    References
    ==========

    .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf

    Nr   r.   F)r,   c                 S   s   g | ]\}}t || qS r   r   r/   r   r   r   r      r   z(intersecting_product.<locals>.<listcomp>r@   r:   r   r   r   intersecting_product  s    ,rB   )r   NNNN)N)__doc__
sympy.corer   r   sympy.core.functionr   Zsympy.discrete.transformsr   r   r   r	   r
   r   r   r   sympy.utilities.iterablesr   sympy.utilities.miscr   r-   r(   r$   r&   r'   rA   rB   r   r   r   r   <module>   s   (
X
87BMF