a
    RG5dX,  ã                   @   sH   d dl mZ d dlmZ d dlmZ G dd„ deƒZG dd„ deƒZdS )	é    )ÚExprWithLimits)ÚS)ÚEqc                       s    e Zd ZdZ‡ fdd„Z‡  ZS )ÚReorderErrorzC
    Exception raised when trying to reorder dependent limits.
    c                    s   t ƒ  d||f ¡ d S )Nz%s could not be reordered: %s.)ÚsuperÚ__init__)ÚselfÚexprÚmsg©Ú	__class__© ú^/var/www/html/django/DPS/env/lib/python3.9/site-packages/sympy/concrete/expr_with_intlimits.pyr   	   s    
ÿzReorderError.__init__)Ú__name__Ú
__module__Ú__qualname__Ú__doc__r   Ú__classcell__r   r   r   r   r      s   r   c                   @   sB   e Zd ZdZdZddd„Zdd„ Zdd	„ Zd
d„ Ze	dd„ ƒZ
dS )ÚExprWithIntLimitsz¾
    Superclass for Product and Sum.

    See Also
    ========

    sympy.concrete.expr_with_limits.ExprWithLimits
    sympy.concrete.products.Product
    sympy.concrete.summations.Sum
    r   Nc           
      C   s<  |du r|}g }| j D ]ð}|d |krü| |¡}| ¡ dkrDtdƒ‚| |¡}| tj¡}|jrÒ|tjkr”| |||d  | ||d  | f¡ qú|tj	krÈ| |||d  | ||d  | f¡ qútdƒ‚n(| |||d  | ||d  | f¡ q| |¡ q| j
 ||| | ¡}	|	 ||¡}	| j|	g|¢R Ž S )a¯  
        Change index of a Sum or Product.

        Perform a linear transformation `x \mapsto a x + b` on the index variable
        `x`. For `a` the only values allowed are `\pm 1`. A new variable to be used
        after the change of index can also be specified.

        Explanation
        ===========

        ``change_index(expr, var, trafo, newvar=None)`` where ``var`` specifies the
        index variable `x` to transform. The transformation ``trafo`` must be linear
        and given in terms of ``var``. If the optional argument ``newvar`` is
        provided then ``var`` gets replaced by ``newvar`` in the final expression.

        Examples
        ========

        >>> from sympy import Sum, Product, simplify
        >>> from sympy.abc import x, y, a, b, c, d, u, v, i, j, k, l

        >>> S = Sum(x, (x, a, b))
        >>> S.doit()
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, x + 1, y)
        >>> Sn
        Sum(y - 1, (y, a + 1, b + 1))
        >>> Sn.doit()
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, -x, y)
        >>> Sn
        Sum(-y, (y, -b, -a))
        >>> Sn.doit()
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, x+u)
        >>> Sn
        Sum(-u + x, (x, a + u, b + u))
        >>> Sn.doit()
        -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
        >>> simplify(Sn.doit())
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, -x - u, y)
        >>> Sn
        Sum(-u - y, (y, -b - u, -a - u))
        >>> Sn.doit()
        -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
        >>> simplify(Sn.doit())
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> P = Product(i*j**2, (i, a, b), (j, c, d))
        >>> P
        Product(i*j**2, (i, a, b), (j, c, d))
        >>> P2 = P.change_index(i, i+3, k)
        >>> P2
        Product(j**2*(k - 3), (k, a + 3, b + 3), (j, c, d))
        >>> P3 = P2.change_index(j, -j, l)
        >>> P3
        Product(l**2*(k - 3), (k, a + 3, b + 3), (l, -d, -c))

        When dealing with symbols only, we can make a
        general linear transformation:

        >>> Sn = S.change_index(x, u*x+v, y)
        >>> Sn
        Sum((-v + y)/u, (y, b*u + v, a*u + v))
        >>> Sn.doit()
        -v*(a*u - b*u + 1)/u + (a**2*u**2/2 + a*u*v + a*u/2 - b**2*u**2/2 - b*u*v + b*u/2 + v)/u
        >>> simplify(Sn.doit())
        a**2*u/2 + a/2 - b**2*u/2 + b/2

        However, the last result can be inconsistent with usual
        summation where the index increment is always 1. This is
        obvious as we get back the original value only for ``u``
        equal +1 or -1.

        See Also
        ========

        sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index,
        reorder_limit,
        sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder,
        sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        Nr   é   z"Index transformation is not linearé   z>Linear transformation results in non-linear summation stepsize)ÚlimitsÚas_polyÚdegreeÚ
ValueErrorÚcoeff_monomialr   ÚOneÚ	is_numberÚappendÚNegativeOneÚfunctionÚsubsÚfunc)
r   ÚvarZtrafoZnewvarr   ÚlimitÚpÚalphaÚbetar    r   r   r   Úchange_index   s*    Y



*
*
*zExprWithIntLimits.change_indexc                 C   s8   dd„ | j D ƒ}| |¡dkr*t| dƒ‚n
| |¡S dS )aX  
        Return the index of a dummy variable in the list of limits.

        Explanation
        ===========

        ``index(expr, x)``  returns the index of the dummy variable ``x`` in the
        limits of ``expr``. Note that we start counting with 0 at the inner-most
        limits tuple.

        Examples
        ========

        >>> from sympy.abc import x, y, a, b, c, d
        >>> from sympy import Sum, Product
        >>> Sum(x*y, (x, a, b), (y, c, d)).index(x)
        0
        >>> Sum(x*y, (x, a, b), (y, c, d)).index(y)
        1
        >>> Product(x*y, (x, a, b), (y, c, d)).index(x)
        0
        >>> Product(x*y, (x, a, b), (y, c, d)).index(y)
        1

        See Also
        ========

        reorder_limit, reorder, sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        c                 S   s   g | ]}|d  ‘qS ©r   r   ©Ú.0r$   r   r   r   Ú
<listcomp>°   ó    z+ExprWithIntLimits.index.<locals>.<listcomp>r   z0Number of instances of variable not equal to oneN)r   Úcountr   Úindex)r	   ÚxÚ	variablesr   r   r   r/   ‘   s    zExprWithIntLimits.indexc                 G   s|   | }|D ]n}t |ƒdkr"t|dƒ‚|d }|d }t|d tƒsN|  |d ¡}t|d tƒsj|  |d ¡}| ||¡}q|S )aê  
        Reorder limits in a expression containing a Sum or a Product.

        Explanation
        ===========

        ``expr.reorder(*arg)`` reorders the limits in the expression ``expr``
        according to the list of tuples given by ``arg``. These tuples can
        contain numerical indices or index variable names or involve both.

        Examples
        ========

        >>> from sympy import Sum, Product
        >>> from sympy.abc import x, y, z, a, b, c, d, e, f

        >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y))
        Sum(x*y, (y, c, d), (x, a, b))

        >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder((x, y), (x, z), (y, z))
        Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))

        >>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f))
        >>> P.reorder((x, y), (x, z), (y, z))
        Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))

        We can also select the index variables by counting them, starting
        with the inner-most one:

        >>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1))
        Sum(x**2, (x, c, d), (x, a, b))

        And of course we can mix both schemes:

        >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x))
        Sum(x*y, (y, c, d), (x, a, b))
        >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0))
        Sum(x*y, (y, c, d), (x, a, b))

        See Also
        ========

        reorder_limit, index, sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        r   zInvalid number of argumentsr   r   )Úlenr   Ú
isinstanceÚintr/   Úreorder_limit)r	   ÚargÚnew_exprÚrÚindex1Úindex2r   r   r   Úreorder·   s    .
zExprWithIntLimits.reorderc           	      C   s  dd„ | j D ƒ}| j | }| j | }tt|d jƒ |¡ƒdkrôtt|d jƒ |¡ƒdkrôtt|d jƒ |¡ƒdkrôtt|d jƒ |¡ƒdkrôg }t| j ƒD ]:\}}||kr¾| |¡ q¢||krÒ| |¡ q¢| |¡ q¢t| ƒ| jg|¢R Ž S t	| dƒ‚dS )a-  
        Interchange two limit tuples of a Sum or Product expression.

        Explanation
        ===========

        ``expr.reorder_limit(x, y)`` interchanges two limit tuples. The
        arguments ``x`` and ``y`` are integers corresponding to the index
        variables of the two limits which are to be interchanged. The
        expression ``expr`` has to be either a Sum or a Product.

        Examples
        ========

        >>> from sympy.abc import x, y, z, a, b, c, d, e, f
        >>> from sympy import Sum, Product

        >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
        Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))
        >>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0)
        Sum(x**2, (x, c, d), (x, a, b))

        >>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
        Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))

        See Also
        ========

        index, reorder, sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        c                 S   s   h | ]}|d  ’qS r)   r   r*   r   r   r   Ú	<setcomp>  r-   z2ExprWithIntLimits.reorder_limit.<locals>.<setcomp>r   r   r   z.could not interchange the two limits specifiedN)
r   r2   ÚsetÚfree_symbolsÚintersectionÚ	enumerater   Útyper    r   )	r	   r0   Úyr#   Zlimit_xZlimit_yr   Úir$   r   r   r   r5   ø   s&     

ÿþýzExprWithIntLimits.reorder_limitc                 C   sT   d}| j D ]<}|d |d  }t|dƒ}|dkr6 dS |dkrBq
q
d}q
|rPdS dS )a  
        Returns True if the Sum or Product is computed for an empty sequence.

        Examples
        ========

        >>> from sympy import Sum, Product, Symbol
        >>> m = Symbol('m')
        >>> Sum(m, (m, 1, 0)).has_empty_sequence
        True

        >>> Sum(m, (m, 1, 1)).has_empty_sequence
        False

        >>> M = Symbol('M', integer=True, positive=True)
        >>> Product(m, (m, 1, M)).has_empty_sequence
        False

        >>> Product(m, (m, 2, M)).has_empty_sequence

        >>> Product(m, (m, M + 1, M)).has_empty_sequence
        True

        >>> N = Symbol('N', integer=True, positive=True)
        >>> Sum(m, (m, N, M)).has_empty_sequence

        >>> N = Symbol('N', integer=True, negative=True)
        >>> Sum(m, (m, N, M)).has_empty_sequence
        False

        See Also
        ========

        has_reversed_limits
        has_finite_limits

        Fr   r   TN)r   r   )r   Zret_NoneÚlimÚdifÚeqr   r   r   Úhas_empty_sequence.  s    '

z$ExprWithIntLimits.has_empty_sequence)N)r   r   r   r   Ú	__slots__r(   r/   r;   r5   ÚpropertyrG   r   r   r   r   r      s   

w&A6r   N)	Zsympy.concrete.expr_with_limitsr   Úsympy.core.singletonr   Úsympy.core.relationalr   ÚNotImplementedErrorr   r   r   r   r   r   Ú<module>   s   