a
    BCCf9                    @   sf  d dl mZ d dlZd dlZd dlZd dlZd dlmZm	Z	m
Z
mZ d dlmZ d dlmZ d dlmZ d dlmZmZmZmZmZmZmZ d dlmZmZ dd	lmZ d d
lmZ G dd dZ G dd dZ!G dd dZ"G dd de"Z#ej$j%dd Z&G dd deZ'G dd dZ(G dd dZ)G dd dZ*G dd dZ+G dd  d Z,G d!d" d"Z-dS )#    )productN)assert_assert_equalassert_allcloseassert_almost_equal)raises)distributions)epps_singleton_2sampcramervonmises_cdf_cvmcramervonmises_2samp_pval_cvm_2samp_exactbarnard_exactboschloo_exact)mannwhitneyu
_mwu_state   )check_named_results)_TestPythranFuncc                   @   s<   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd ZdS )TestEppsSingletonc                 C   sJ   t g d}t g d}t||\}}t|ddd t|ddd d S )N)
gffffffֿgffffff@gGz?\(\?ffffff?gQ@gq=
ףp?gGzgGz׿gp=
#(@)
gffffffg333333ÿgףp=
@g      
@gGz@g)\(@g      @g(\@g(\ @333333!@gHzG.@r   decimalgQ,r?   )nparrayr	   r   selfxywp r$   \/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/stats/tests/test_hypotests.pytest_statistic_1   s
    z"TestEppsSingleton.test_statistic_1c                 C   sB   t d}t d}t||\}}t|ddd t|ddd d S )	N)r   r      r'   r'   r'   r   r   r   r         r)   r)   r)      
   r+   r+   r+   )r+   r(   r   r)   r+   r+   r   r)   r*      r+   r   r   r,   r      r   r)   r-   r+   g!@MbP?atolg&J?r   r   )r   r   r	   r   r   r   r$   r$   r%   test_statistic_2$   s
    

z"TestEppsSingleton.test_statistic_2c           	      C   s   t jd t dt d }}tt|t|\}}tt|t|\}}t||\}}t||  kop|kn   t||  ko|kn   d S )N        )r   randomseedaranger	   listtupler   )	r   r    r!   Zw1p1Zw2p2Zw3Zp3r$   r$   r%   test_epps_singleton_array_like.   s    z0TestEppsSingleton.test_epps_singleton_array_likec                 C   s"   dt d }}ttt|| d S )Nr   r'   r   r(   r+   )r   r7   assert_raises
ValueErrorr	   r   r    r!   r$   r$   r%   test_epps_singleton_size9   s    z*TestEppsSingleton.test_epps_singleton_sizec                 C   s0   dddddt jft d }}ttt|| d S )Nr   r'   r   r(   r)   r+   )r   infr7   r>   r?   r	   r@   r$   r$   r%   test_epps_singleton_nonfinite>   s    z/TestEppsSingleton.test_epps_singleton_nonfinitec                 C   s2   t dt d }}t||}d}t|| d S )N   r3   )	statisticpvalue)r   r7   r	   r   )r   r    r!   res
attributesr$   r$   r%   
test_namesC   s    
zTestEppsSingleton.test_namesN)	__name__
__module____qualname__r&   r1   r<   rA   rC   rI   r$   r$   r$   r%   r      s   
r   c                   @   sd   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd Zdd Zdd ZdS )TestCvmc                 C   s    t tg ddg ddd d S )N)gy;i?g#^?gE>?gD
)?r(   {Gz?皙?      ?g+?-C6?r/   r   r   r   r$   r$   r%   
test_cdf_4N   s
    zTestCvm.test_cdf_4c                 C   s    t tg ddg ddd d S )N)g8*5?g@߾?gHm?g%1 ?r+   )rO   rP   rQ   g333333?rR   r/   rS   rT   r$   r$   r%   test_cdf_10T   s
    zTestCvm.test_cdf_10c                 C   s    t tg ddg ddd d S )N)g}tg?g`?gI5o?gׁsF?  rN   rR   r/   rS   rT   r$   r$   r%   test_cdf_1000Z   s
    zTestCvm.test_cdf_1000c                 C   s   t tg dg ddd d S )N)a+e?+?&pn?+MJA?rN   rR   r/   rS   rT   r$   r$   r%   test_cdf_inf`   s
    
zTestCvm.test_cdf_infc                 C   s4   t tddgdddg t tddgdddg d S )	NgX(~$?gUUUUU5f@i  r   r   gaah?g"@   )r   r   rT   r$   r$   r%   test_cdf_supportf   s    zTestCvm.test_cdf_supportc                 C   s$   t tg ddtg ddd d S )N)rY   rZ   r[   r\   d   '  rR   r/   rS   rT   r$   r$   r%   test_cdf_large_nk   s
    
zTestCvm.test_cdf_large_nc                 C   sF   t dtdd  k odk n   t dtd  k o:dk n   d S )NgwJ?gt@rW         ?)r   r   rT   r$   r$   r%   test_large_xr   s    "zTestCvm.test_large_xc                 C   s<   d}t t|d d}tt|j|dk t|jd d S )N   皙?normrc   r   )r
   r   onesr   r   rE   r   rF   )r   nrG   r$   r$   r%   
test_low_p{   s    zTestCvm.test_low_pc                 C   s"   t ttdgd t ttdd d S )N      ?rg   r$   )r>   r?   r
   rT   r$   r$   r%   test_invalid_input   s    zTestCvm.test_invalid_inputc                 C   s   t g dd}t|jddd t|jddd t g ddd}t|jddd t|jd	dd t g d
d}t|jddd t|jddd d S )N)g333333r'   r   g?r(   皙?333333?rg   gZ	%q?ư>r/   gEж?)r   rk   g!O!W*?gz"W`?)	r   r'   r)   ffffff?gQ?      ?      @exponge.?gnz\(r?)r
   r   rE   rF   )r   rG   r$   r$   r%   test_values_R   s    zTestCvm.test_values_Rc                 C   s|   t dd }}t|tjj}t|d}t|j|jf|j|jf t|tj	j|}t|d|}t|j|jf|j|jf d S )Nr)   )rp   ffffff?ru   beta)
r   r7   r
   r   ru   cdfr   rE   rF   rx   )r   r    argsr1r2r$   r$   r%   test_callable_cdf   s    
zTestCvm.test_callable_cdfN)rJ   rK   rL   rU   rV   rX   r]   r_   rb   rd   rj   rl   rv   r}   r$   r$   r$   r%   rM   J   s   	rM   c                   @   s^  e Zd Zdd Zdd Zdd Zg dZg dZd	d
ddgdd
ddgdd
ddgd	dddgddddgddddggZe	j
dedd Zd	dddgddddgddddgd	dddgddddgdddd ggZe	j
ded!d" Zd#d$ Zg d%g d&g d'd(Zg d)g d*g d+g d,d-Zg d.g d/g d0g d1g d2d3Zg d4g d5g d6g d7g d8g d9d:Zd;d< Zd=d> Zd?d@ Zd	d
ddAgdd
ddBgdd
ddCgd	dddAgddddBgddddAggZe	j
dDedEdF ZdGdH Ze	j
dId
dgdJdK ZdLdM Zg d-dNdOdPdQejdNdRdSdTdTdUgdVdWfg d-dNdOdPdQejejdRdSdTdTdUgdXdYfdSdRejdTgdNdOdPdQejdNdRdSdTdTdUgdZd[fdSdRejdTgdNdOdPdQejejdRdSdTdTdUgd\d]fdSejejdTgdNdOdPdQejejdRdSdTdTdUgd^d_fgZe	j
d`edadb Zg dcg ddg deg dfg dgg dhg dig djg dkg	Z e	j
dle dmdn Z!dodp Z"dqdr Z#g d(dsdtgddugg d(dsdtgddugg d(dsdtgd	dvgg d(dRgddwgg d(dRgddwgg d(dRgd	dxgdSdRgdSdRgddygdSdRgdSdRgddygdSdRgdSdRgd	dzgg	Z$e	j
g d{e$d|d} Z%d~d Z&e	j
dg ddd Z'dd Z(dS )TestMannWhitneyUc                 C   s
   dt _d S )NTr   
_recursiverT   r$   r$   r%   setup_method   s    zTestMannWhitneyU.setup_methodc                 C   sx  t ddg}t ddg}ttdd tg | W d    n1 sH0    Y  ttdd t|g  W d    n1 s~0    Y  ttdd t||dd	 W d    n1 s0    Y  ttd
d t||dd W d    n1 s0    Y  ttdd t||dd W d    n1 s.0    Y  ttdd t||dd W d    n1 sj0    Y  d S )Nr   r'   r   r(   `x` and `y` must be of nonzeromatchz`use_continuity` must be oneZekki)use_continuityz`alternative` must be one ofalternativez`axis` must be an integerrk   axisz`method` must be one ofmethod)r   r   r>   r?   r   r@   r$   r$   r%   test_input_validation   s    ((,,.z&TestMannWhitneyU.test_input_validationc                 C   s
  t jd d}t j|d }t j|d }t||}t||dd}t||dd}|j|jksfJ |j|jksvJ t j|d }t j|d }t||}t||dd}t||dd}|j|jksJ |j|jksJ t||}t||dd}t||dd}|j|jksJ |j|jks&J t j|d }t j|d }t||}t||dd}t||dd}|j|jks~J |j|jksJ t j|d }t j|d }|d |d< t||}t||dd}t||dd}|j|jksJ |j|jksJ d S )Nr   r-   
asymptoticr   exactr   )r   r5   r6   randr   rF   )r   ri   r    r!   autor   r   r$   r$   r%   	test_auto   sH    




zTestMannWhitneyU.test_auto)gm9Aj@g+H3[@gi>s@)g#hA{@glz@gcDf@gǳ*h@gZA@gI9^YQa@g`@g՞p@g:q@g&@gZ|@g`r@gMc3g@	two-sidedr   r   r   )   
+?less)r   
+?greater)r   缌%c?r   )r   g9:?)r   g9:?)r   g*::?)kwdsexpectedc                 C   s$   t | j| jfi |}t|| d S N)r   r    r!   r   r   r   r   rG   r$   r$   r%   
test_basic  s    zTestMannWhitneyU.test_basicT)r   r   )   r   )r   r   )r   r   F)r   gl,KNh?)r   giژ?)r   gl,KNh?c                 C   s(   t | j| jfddi|}t|| d S )Nr   r   )r   r!   r    r   r   r$   r$   r%   test_continuity%  s    z TestMannWhitneyU.test_continuityc           	      C   s   g d}t g d}t g dd }t g dd }|d || || ||| || |d g}t||ddd}g d	}g d
}t|j| t|j| d S )Nr=   r   r'   r   r(   r)   )r   r   r   r   r   rO   )r   r   r   r   r   r   )r   r   )r+   	         !@r-   rt   r,   r*   )r   g]U?g[?gi\?gZX<_?gx.?g 
?)r   r   r   r   rE   r   rF   )	r   r    Zy0ZdyZdy2r!   rG   Z
U_expectedZ
p_expectedr$   r$   r%   test_tie_correct3  s    *z!TestMannWhitneyU.test_tie_correct)g      ?rQ   g      ?)rm   皙?皙?rn   )rP   rm   r   r   rQ   g?r   r'   r   )r   r   rn   )gx&?g/$?gJ+?r   rn   )y&1?v/?gv/?r   gjt?~jt?ʡE?)	gy&1?gV-?r   rm   gS?gv?gʡE?g'1Z?gm?r=   )gK7A`?gZd;O?rQ   gMbX?)Mb?RQ?RQ?M?r   r   )	g;On?;On?V-?g      ?gJ+?r   gx&?rQ   gCl?)Mb?Mb?Mb?gy&1?r   M?g|?5^?gn?g\(\?!rh?K7?)Mbp?r   r   r   ~jt?g333333?g"~j?ףp=
?gzG?K7?gGz?gl?rQ   gI+?r   )r   r   g1Zd?r   )r   r   r   1Zd?g%C?r   r   )
g~jt?g~jt?r   gsh|??gS㥛?r   r   g+?r   r   )g{Gzt?rO   g~jt?gL7A`?r   gjt?gPn?gI+?gX9v?gQ?gMb?gsh|??gK7A`?)Mb`?r   g;On?gQ?g9v?gˡE?gT㥛 ?gbX9ȶ?grh|?gQ?r   gx&?gv/?gMbX?g(\?gQ?)r.   r   r   r   g9v?g/$?r   r   gL7A`?g
ףp=
?gQ?r   gK7?g`"?g7A`?r   gV-?gjt?gˡE?)r   r'   r   r(   r)   r*   c           
   	   C   s   | j | j| j| jd}| D ]\}}| D ]\}}tdt|}tt	j
|||d|dd td|| d }tt	j
|||dt	j|||d t	j|||d d t	j|||d}t||d d d  t	j|||d}	t||	 q.qd S )N)r   r(   r)   r*   r   )kmri   r.   r/   r   r   )pn3pn4pm5pm6itemsr   r7   lenr   r   ry   Zsfpmf)
r   Zp_tablesri   tabler   r#   uu2r   Zpmf2r$   r$   r%   test_exact_distributionc  s"    z(TestMannWhitneyU.test_exact_distributionc                 C   s   t jd t jd}t jd}t||dd}t||dd}|j|jksPJ t |j|j dksjJ t jd}t jd}t||dd}t||dd}|j|jksJ t |j|j dk sJ d S )	Nr   r)   r   r   r   rO   (   r.   )r   r5   r6   r   r   rE   absrF   )r   r    r!   res1res2r$   r$   r%   test_asymptotic_behavior{  s    z)TestMannWhitneyU.test_asymptotic_behaviorc                 C   sr   t g dddgddd}t g dddgddd}t|j|j |jdksLJ t g dddgd	dd}t|d
 d S )Nr   rk         @r   r   r   r   rQ   r   )r   r   )r   r   rF   )r   Zres_lZres_grG   r$   r$   r%   test_exact_U_equals_mean  s    z)TestMannWhitneyU.test_exact_U_equals_meanr   r   )r   rQ   )r   g郡E?)r   resultc                 C   s   t tdi || d S )Nr   r'   )r   r'   )r   r   )r   r   r   r$   r$   r%   test_scalar_data  s    z!TestMannWhitneyU.test_scalar_datac                 C   sH   t tddddd t tddddd t tddddddtjf d S )	Nr   r   r   )rQ   r   r   F)r   r   rQ   )r   r   r   nanrT   r$   r$   r%   test_equal_scalar_data  s    
z'TestMannWhitneyU.test_equal_scalar_datar   c                 C   s|  t jd d}d\}}t j|dd}t jd|ddd }t||||d	}d
}|jj|ksbJ |jj|ksrJ t ||dt ||d }}|d }|j	|j	ksJ t 
|||f }t 
|||f }|jd d |ksJ |jd d |ksJ t |}	t |}
tdd |D  D ]8}|| }|| }t|||d}|j|	|< |j|
|< qt j|j|
 t j|j|	 d S )Nr   )r,   r+   r   r-   r*   r   rm   )r   r   )r*   r   r-   r   )N.c                 S   s   g | ]}t |qS r$   )range).0ir$   r$   r%   
<listcomp>      z8TestMannWhitneyU.test_gh_12837_11113.<locals>.<listcomp>r   )r   r5   r6   r   r   rF   shaperE   ZmoveaxisndimZbroadcast_tozerosr   testingr   )r   r   r   r   ri   r    r!   rG   r   
statisticsZpvaluesindicesxiyitempr$   r$   r%   test_gh_12837_11113  s4    


z$TestMannWhitneyU.test_gh_12837_11113c                 C   s~   g d}g d}t ||}tj|d< t ||}t|j|j t|j|j tj|d< t ||}t|jtj t|jtj d S )Nr=   )r   r*   r,   r-   r   r   r'   r   r(   r(   r)   r(   )r   r   rB   r   rE   rF   r   )r   r    r!   r   r   res3r$   r$   r%   test_gh_11355  s    




zTestMannWhitneyU.test_gh_11355r   r*   r,   r-   r'   r   r(   r)   r+   g+zQ?r   g}$k\?g     1@g!˛G*?r   g,s?     8@gFHQ?)r    r!   rE   rF   c                 C   s2   t ||dd}t|j|dd t|j|dd d S )Nr   r   -q=r/   )r   r   rE   rF   )r   r    r!   rE   rF   rG   r$   r$   r%   test_gh_11355b  s    zTestMannWhitneyU.test_gh_11355b)Tr   r   g&?)Tr   r   gO?)Tr   r   gO?)Fr   r   g9@VN!x?)Fr   r   g9M>?)Fr   r   g9M>?)Tr   r   g?UV?)Tr   r   gߺVJH?)Tr   r   gVJH?)r   r   r   
pvalue_expc           	      C   s:   d}d}d}t |||||d}t|j| t|j| d S )N#   )
rf   g(\?g=
ףp=?gp=
ף?g333333?gGz?g(\?g=
ףp=?r   g\(\?)gffffff?g)\(?rs   gGz?g\(\?r   r   r   )r   r   rE   r   rF   )	r   r   r   r   r   Zstatistic_expr    r!   rG   r$   r$   r%   test_gh_9184   s    zTestMannWhitneyU.test_gh_9184c                 C   s:   t tdd tg g  W d    n1 s,0    Y  d S )Nr   r   )r>   r?   r   rT   r$   r$   r%   test_gh_6897?  s    zTestMannWhitneyU.test_gh_6897c                 C   sf   t t jt jt jt jt jg}t t jt jt jt jt jg}t||}t|jt j t|jt j d S r   )r   r   r   r   r   rE   rF   )r   abrG   r$   r$   r%   test_gh_4067D  s
    
zTestMannWhitneyU.test_gh_4067rk   r   )r   ga׀}?)r   rc   )rk   g?h?)rk   r   )r'   g5&#\?)r'   r   )r    r!   r   r   c                 C   s$   t ||d|dd}t||dd d S )NTr   r   r   rtol)r   r   )r   r    r!   r   r   rG   r$   r$   r%   test_gh_2118\  s    
zTestMannWhitneyU.test_gh_2118c                 C   s   t jd}|jdd}|jdd}t d t_tj||dd tjj}|d d	krb|d
 dksfJ tj||dd |tjjksJ t d t_tj|d| ddd tjj}|d d
ksJ tjd| |ddd |tjjksJ d S )N   g>mjK r)   sizerq   r   r   r   r   r   r   r*   r   re   r   )r   r   r   )	r   r5   default_rngrh   r   _fmnksstatsr   r   )r   rngr    r!   r   r$   r$   r%   test_gh19692_smaller_tabled  s    z+TestMannWhitneyU.test_gh19692_smaller_tabler   )r   r   r   c                 C   sx   t jd}|jdd}|jdd}tj||t |dd}tj||d|dd}t|j|jdd	 t|j|jdd	 d S )
Nr   )r'   r)   r   )r'   r*   r   )r   r   r   r   V瞯<r   )	r   r5   r   r   r   PermutationMethodr   rE   rF   )r   r   r   r    r!   rG   r   r$   r$   r%   test_permutation_method}  s    
z(TestMannWhitneyU.test_permutation_methodc                 C   s
   d t _d S r   r   rT   r$   r$   r%   teardown_method  s    z TestMannWhitneyU.teardown_methodN))rJ   rK   rL   r   r   r   r    r!   Zcases_basicpytestmarkparametrizer   Zcases_continuityr   r   r   r   r   r   r   r   r   Zcases_scalarr   r   r   r   r   rB   Zcases_11355r   Z
cases_9184r   r   r   Z
cases_2118r   r   r  r  r$   r$   r$   r%   r~      s"  5




+





r~   c                   @   s   e Zd Zdd Zdd ZdS )TestMannWhitneyU_iterativec                 C   s
   dt _d S )NFr   rT   r$   r$   r%   r     s    z'TestMannWhitneyU_iterative.setup_methodc                 C   s
   d t _d S r   r   rT   r$   r$   r%   r    s    z*TestMannWhitneyU_iterative.teardown_methodN)rJ   rK   rL   r   r  r$   r$   r$   r%   r    s   r  c                  C   s   d t _td t _tjd} | d}| d}tj||dd t	t jdksXJ | d}tj||dd t	t jdkrJ d S )	Nr   l   7cE"r)   i  r   r   r   i  )
r   r   r   rh   r   r5   r   r   r   all)r   r    r!   r$   r$   r%   test_mann_whitney_u_switch  s    


r
  c                   @   s   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dd Z
dd Zdd Zdd Zejdddd Zdd ZdS )TestSomersDc                    st    j  j  _td j  j ftd j  j fd _ fdd jD }tjtj	dd _
 j
|  _d S )Nr+   r   c                    s   g | ]} j | d  qS )r   )	arguments)r   idxrT   r$   r%   r     r   z,TestSomersD.setup_method.<locals>.<listcomp>r   r   )ZALL_INTEGERZ	ALL_FLOATZdtypesr   r7   r  	functoolspartialr   somersdpartialfuncr   )r   Zinput_arrayr$   rT   r%   r     s    

zTestSomersD.setup_methodc                 G   s6   | j | }t|j| jjdd t|j| jjdd d S )Nr  r/   )r  r   rE   r   rF   )r   rz   rG   r$   r$   r%   pythranfunc  s    
zTestSomersD.pythranfuncc                 C   sf   g dg dg dg}t |}| t j}t j|fi |}t|j|jdd t|j|jdd d S )N)r^         r,   r   )r,   r     r   re   )r   r   r'   r,      r  r/   )r   r  Zget_optional_argsr   rE   rF   )r   r   r   Zoptional_argsr   r$   r$   r%   test_pythranfunc_keywords  s    
z%TestSomersD.test_pythranfunc_keywordsc                 C   sn  g d}g d}d}t ||}t|j|d dd t|j|d dd g d}g d	}d}t ||}t|j|d dd t|j|d dd g d
}g d}d}t ||}t|j|d dd t|j|d dd td}td}d}t ||}t|j|d dd t|j|d dd td}tg d}d}t ||}t|j|d dd t|j|d dd td}tdd d d }d}t ||}t|j|d dd t|j|d dd td}tg d}d}t ||}t|j|d dd t|j|d dd g d}g d}d}t ||}t|j|d dd t|j|d dd t g dg d}t|jtj t|jtj t g dg d}t|jtj t|jtj t g dg d}t|jtj t|jtj t dgdg}t|jtj t|jtj t g g }t|jtj t|jtj td}td}t	t
t j|| d S )N)r)   r'   r   r   r*   r(   r,   r-   )r)   r'   r*   r   r   r-   r,   r(           rc   r   r  r/   r   )	r   r)   r'   r   r   r*   r(   r,   r-   )	r)   r'   r   r*   r   r   r-   r,   r(   )r)   r'   r   r   r*   r(   r,   )r)   r'   r*   r   r   r,   r(   )g+$I$I¿g=/3n+?r+   rc   r   )
r   r'   r   r   r(   r*   r)   r,   r-   r   )gs'}'?r  r   )g      r   )
r   r,   r-   r*   r)   r   r(   r'   r   r   )g}'}'r  )re   r'   r   re   r'   )r   r(   r,   r   r   )      g.ʂ?)r'   r'   r'   )r'   r   r'   g      $@g      4@)r   r  r   rE   rF   r   r7   r   r   r>   r?   )r   r    r!   r   rG   x1x2r$   r$   r%   test_like_kendalltau  s    







z TestSomersD.test_like_kendalltauc                 C   s   g d}g d}d}d}d}t ||}t|j|dd t|j|dd t|jjd	 t ||}t|j|dd t|j|dd t|jjd
 d S )N)r   r   r   r'   r'   r'   r'   r'   r   r   r   r'   r'   r'   r'   r'   r'   r'   r   r   r   r   r   r   )r   r   r   r   r   r   r   r   r   r   r'   r'   r'   r'   r'   r'   r'   r'   r'   r'   r'   r'   r'   r'   gCE]t?g^_?gO((Ƿ?r  r/   rR   )r   r'   r'   r   )r   r  r   rE   rF   r   r   r   )r   r    r!   Zd_crZd_rcr#   rG   r$   r$   r%   test_asymmetry>  s    zTestSomersD.test_asymmetryc                 C   s   t ddgddgddgddgddgg}|j}d}tt|j| t d	d
gdd
gd
dgg}d\}}tt|j| tt|jj| t d	d
gd
dgdd
gg}d}tt|jj| d S )Nr-   r'   r*   r)   r   r(   r   gHHHHHH?r  r   U   r3   )gM&w?rc   gtE]t)r   r   Tr   r   r  rE   )r   r   ZdyxZdxyr$   r$   r%   test_somers_originalW  s    (z TestSomersD.test_somers_originalc                 C   s6  d}d}t |}t jd tjj|t || d|}t	|}t j
|dt |d dd}t	|}t j
|dt |d dd}t	|}	t j
|dt |d d dd}
t	|
}t|jdd	d
 t|j|j t|j|	j t|j|j t|jdd	d
 t|j|j t|j|	j t|j|j d S )Nr`   r(   r*   r   r#   r'   r   r   gayr  r/   gPj$?)r   prodr5   r6   r   multinomialrvsrh   reshaper  insertr   r   rE   rF   )r   Nr   r   srG   s2r   Zs3r   Zs4Zres4r$   r$   r%   *test_contingency_table_with_zero_rows_colsm  s(    
 


 
z6TestSomersD.test_contingency_table_with_zero_rows_colsc           	      C   s  d}d}t |}t jd tjj|t || d|}|d }d}t	t
|d t| W d    n1 sv0    Y  |d }d	}t	t
|d t| W d    n1 s0    Y  d
}t	t
|d tg g W d    n1 s0    Y  t	t
|d tdgg W d    n1 s00    Y  t d}t	t
|d t| W d    n1 sr0    Y  d|d< t	t
|d t| W d    n1 s0    Y  d S )Nr`   r$  r   r%  r'   z:All elements of the contingency table must be non-negativer   rO   z5All elements of the contingency table must be integerz?At least two elements of the contingency table must be nonzero.r   )r   r   r   )r   r&  r5   r6   r   r'  r(  rh   r)  r>   r?   r  r   )	r   r+  r   r   r,  Zs5messageZs6Zs7r$   r$   r%   test_invalid_contingency_tables  s0    
 ((*.
*z+TestSomersD.test_invalid_contingency_tablesc                 C   sb   g d}ddt jg}g d}ddt j g}t||}t||}t|j|j t|j|j d S )Nr   r   g @)r   r'   r   r   r  )r   rB   r   r  r   rE   rF   )r   r    r  r!   y2rG   r   r$   r$   r%   test_only_ranks_matter  s    z"TestSomersD.test_only_ranks_matterc                 C   s6   t d}t d}t||}t|jt d d S )Nr+   )r   r7   r   r  r   r   eyer   r    r!   rG   r$   r$   r%   test_contingency_table_return  s    

z)TestSomersD.test_contingency_table_returnc                 C   s`  g d}g d}t j||dd}|jdks.J t j||dd}t|j|j t|jd|jd   t j||d	d}t|j|j t|j|jd  |  t j||dd}|jdk sJ t j||d	d}t|j|j t|jd|jd   t j||dd}t|j|j t|j|jd  tjt	d
d  t j||dd W d    n1 sR0    Y  d S )Nr   )r)   r*   r,   r-   r,   r   r   r   r   r   r'   r   z`alternative` must be...r   	ekki-ekki)
r   r  rE   r   r   rF   reverser  r   r?   )r   r  r  r   rG   r$   r$   r%   test_somersd_alternative  s*    z$TestSomersD.test_somersd_alternativepositive_correlation)FTc                 C   s   t d}|r|nt |}|r$dnd}tj||dd}|j|ksFJ |jdksTJ tj||dd}|j|ksrJ |j|r~dndksJ tj||dd}|j|ksJ |j|rdndksJ d S )	Nr+   r   r   r   r   r   r   r   )r   r7   flipr   r  rE   rF   )r   r9  r  r  Zexpected_statisticrG   r$   r$   r%    test_somersd_perfect_correlation  s    
z,TestSomersD.test_somersd_perfect_correlationc                 C   sV   ddg}d}t d t j||d}t j||d}d}t||j}t||dd d S )	Nr   r'   @B i_ )r   g Hz	Yr  r/   )r5   r6   choicesr   r  rE   r   )r   classesZ	n_samplesr    r!   Zval_sklearnZ	val_scipyr$   r$   r%   !test_somersd_large_inputs_gh18132  s    
z-TestSomersD.test_somersd_large_inputs_gh18132N)rJ   rK   rL   r   r  r  r  r   r#  r.  r0  r2  r5  r8  r  r  r  r;  r?  r$   r$   r$   r%   r    s   o#)
r  c                   @   s  e Zd ZdZejdddgddggdfdd	gd
dggdfd	dgdd	ggdfddgddggdfddgddggdfddgddggdfddgddggdfddgddggdfddgdd	ggdfdd	gddggdfd	dgdd	ggdfgd d! Zejdddgddggd"fdd	gd
dggd#fd	dgdd	ggd$fddgddggd%fddgddggd&fddgddggd'fddgddggd(fddgddggd)fddgdd	ggd*fdd	gddggd+fd	dgdd	ggd$fgd,d- Zd.d/ Z	ejdddgddggd0fgd1d2 Z
ejdddgddggd3ejffddgddggd3ejffgd4d5 Zejdd	dgdd	ggd6fdd7gd8dggd9fd:d;gd<dggd=fgejd>d?d@gdAdB ZdCS )DTestBarnardExactz8Some tests to show that barnard_exact() works correctly.input_sample,expected+   r   r+   '   )gXyq@g{2s&Q7?r`   r'   rW   r)   )gllgEA]0K?r,   r-   )*)1%g_  ?r   )g_c1?g= ?   rD   )g5PyQgQ@2?r   r  )ggJ"?)g_c1gwݝل?r   r(   )g7@g      ?r   )g~t,?3O?r*   )gr?~CY7?c                 C   s(   t |}|j|j }}t||g| dS )zThe expected values have been generated by R, using a resolution
        for the nuisance parameter of 1e-6 :
        ```R
        library(Barnard)
        options(digits=10)
        barnard.test(43, 40, 10, 39, dp=1e-6, pooled=TRUE)
        ```
        Nr   rE   rF   r   r   input_sampler   rG   rE   rF   r$   r$   r%   test_precise  s    zTestBarnardExact.test_precise)g7\@gA2?)gXS;gh?)g>!Ɏg6  ?)gSy@?g^F?)g-gXI#?)gaЍgo?)gb]?gFugH	?)g6ҭ@g      ?)gi(	rF  )gNXzrG  c                 C   s,   t |dd}|j|j }}t||g| dS )zThe expected values have been generated by R, using a resolution
        for the nuisance parameter of 1e-6 :
        ```R
        library(Barnard)
        options(digits=10)
        barnard.test(43, 40, 10, 39, dp=1e-6, pooled=FALSE)
        ```
        F)ZpooledNrH  rI  r$   r$   r%   test_pooled_param<  s    z"TestBarnardExact.test_pooled_paramc                 C   s  d}t t|d( tddgddggdd W d    n1 s>0    Y  d	}t t|d& ttd
dd W d    n1 s0    Y  d}t t|d$ tddgddgg W d    n1 s0    Y  d}t t|d& tddgddggd W d    n1 s0    Y  d S )N7Number of points `n` must be strictly positive, found 0r   r   r'   r   r(   r   ri   ,The input `table` must be of shape \(2, 2\).r*   *All values in `table` must be nonnegative.r   zI`alternative` should be one of {'two-sided', 'less', 'greater'}, found .*not-correct)r>   r?   r   r   r7   r)  r   	error_msgr$   r$   r%   test_raisesY  s    642zTestBarnardExact.test_raisesr  c                 C   s6   t |}|j|j }}t||d  t||d  d S Nr   r   r   rE   rF   r   rI  r$   r$   r%   test_edge_casess  s    z TestBarnardExact.test_edge_casesrc   c                 C   s6   t |}|j|j }}t||d  t||d  d S rU  rV  rI  r$   r$   r%   test_row_or_col_zero  s    z%TestBarnardExact.test_row_or_col_zero)rD  gE\/??   ,  )ggQ5r     r4   i  )g&X}>r  r   r   r   c           	      C   sf   |\}}|dkr2t |dddddf }| }t||d}|j|j }}t||g||gdd dS )a  
        "The expected values have been generated by R, using a resolution
        for the nuisance parameter of 1e-6 :
        ```R
        library(Barnard)
        options(digits=10)
        a = barnard.test(2, 7, 8, 2, dp=1e-6, pooled=TRUE)
        a$p.value[1]
        ```
        In this test, we are using the "one-sided" return value `a$p.value[1]`
        to test our pvalue.
        r   Nr   r   Hz>r/   )r   r   r   rE   rF   r   )	r   rJ  r   r   Zexpected_statZless_pvalue_expectrG   rE   rF   r$   r$   r%   test_less_greater  s    z"TestBarnardExact.test_less_greaterN)rJ   rK   rL   __doc__r  r  r  rK  rL  rT  rW  r   r   rX  r]  r$   r$   r$   r%   r@    sp   



r@  c                   @   s  e Zd ZdZdZejdddgddggdfdd	gd
d
ggdfddgddggdfd
dgd
d	ggdfddgd	dggdfdd	gddggdfddgddggdfddgddggdfd
dgddggdfg	dd Zejdddgd
dggd fddgddggd!fdd	gd
d
ggd"fdd#gddggd$fddgddggd%fddgd	dggd&fdd	gddggdfddgd'dggdfddgddggd!fddgddggd(fd
dgddggd)fgd*d+ Z	ejdddgd
dggd,fddgddggd-fdd	gd
d
ggd.fddgddggd/fddgd	dggd0fdd	gddggd1fddgddggd-fddgddggd2fgd3d4 Z
d5d6 Zejdddgdd
ggejejffddgd
dggejejffgd7d8 Zd9d: Zejd;d<d=d> Zd?S )@TestBoschlooExactz9Some tests to show that boschloo_exact() works correctly.r\  rA  r'   r,   r-   )<vB\?g/??r)   r   r+   )gM?gA>?r   rD   r  )_VѶ?g֭?)u %?gc'?r   r(   r   r   r   )rQ   g      ?re   )+f?gXc}v?   %   )gZыD?ggi]?c                 C   s2   t |dd}|j|j }}t||g|| jd dS )a  The expected values have been generated by R, using a resolution
        for the nuisance parameter of 1e-8 :
        ```R
        library(Exact)
        options(digits=10)
        data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE)
        a = exact.test(data, method="Boschloo", alternative="less",
                       tsmethod="central", np.interval=TRUE, beta=1e-8)
        ```
        r   r   r/   Nr   rE   rF   r   ATOLrI  r$   r$   r%   	test_less  s    zTestBoschlooExact.test_lessrB  r   rC  )k\2?g0,%?)gKv?gN3?)rb  g'&5?rE  )gw@_?g7?)gi{?gɑ)z?)օa?g1|?r*   )gY<;?gND?)ge?gG`?c                 C   s2   t |dd}|j|j }}t||g|| jd dS )a  The expected values have been generated by R, using a resolution
        for the nuisance parameter of 1e-8 :
        ```R
        library(Exact)
        options(digits=10)
        data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE)
        a = exact.test(data, method="Boschloo", alternative="greater",
                       tsmethod="central", np.interval=TRUE, beta=1e-8)
        ```
        r   r   r/   Nrg  rI  r$   r$   r%   test_greater  s    zTestBoschlooExact.test_greater)rj  gqQS,5?)r`  gG?/??)rb  gKE`?)ra  ghr1ֽ?)rk  grfb?)rQ   g      ?)rd  gP:pRv?c                 C   s4   t |ddd}|j|j }}t||g|| jd dS )a  The expected values have been generated by R, using a resolution
        for the nuisance parameter of 1e-8 :
        ```R
        library(Exact)
        options(digits=10)
        data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE)
        a = exact.test(data, method="Boschloo", alternative="two.sided",
                       tsmethod="central", np.interval=TRUE, beta=1e-8)
        ```
        r   @   )r   ri   r/   Nrg  rI  r$   r$   r%   test_two_sided  s    z TestBoschlooExact.test_two_sidedc                 C   s  d}t t|d( tddgddggdd W d    n1 s>0    Y  d	}t t|d& ttd
dd W d    n1 s0    Y  d}t t|d$ tddgddgg W d    n1 s0    Y  d}t t|d& tddgddggd W d    n1 s0    Y  d S )NrM  r   r   r'   r   r(   r   rN  rO  r*   rP  r   zK`alternative` should be one of \('two-sided', 'less', 'greater'\), found .*rQ  )r>   r?   r   r   r7   r)  rR  r$   r$   r%   rT    s    642zTestBoschlooExact.test_raisesc                 C   s6   t |}|j|j }}t||d  t||d  d S rU  )r   rE   rF   r   rI  r$   r$   r%   rX  '  s    z&TestBoschlooExact.test_row_or_col_zeroc                 C   s`   ddgddgg}t |ddj}t |ddj}dt|| dksBJ t |ddj}|d	ks\J d S )
Nr   rr   re   r   r   r   r'   r   rc   )r   rF   min)r   tblplZpgptr$   r$   r%   test_two_sided_gt_14  s    z%TestBoschlooExact.test_two_sided_gt_1r   )r   r   c                 C   s>   ddgddgg}t ||dj}tj||dd }t|| d S )Nr'   r,   r-   r   r   )r   rE   r   Zfisher_exactr   )r   r   rp  Zboschloo_statZfisher_pr$   r$   r%   test_against_fisher_exact>  s    z+TestBoschlooExact.test_against_fisher_exactN)rJ   rK   rL   r^  rh  r  r  r  ri  rl  rn  rT  r   r   rX  rs  rt  r$   r$   r$   r%   r_    sp   




r_  c                   @   s^   e Zd Zdd Zdd Zdd Zejdg dd	d
 Z	dd Z
dd Zdd Zdd ZdS )TestCvm_2sampc                 C   s   t d}d}tjt|d tg | W d    n1 s<0    Y  tjt|d t|dg W d    n1 sv0    Y  d}tjt|d t||d W d    n1 s0    Y  d S )Nr)   z/x and y must contain at least two observations.r   r   z/method must be either auto, exact or asymptoticZxyz)r   r7   r  r   r?   r   )r   r!   msgr$   r$   r%   rl   I  s    
(*z TestCvm_2samp.test_invalid_inputc                 C   sN   g d}g d}t ||}t t|t|}t|j|jf|j|jf d S )N)r'   r   r(   r,   r*   )r   rw   re   r  )r   r   r   r   rE   rF   r   r    r!   r{   r|   r$   r$   r%   test_list_inputT  s
    
zTestCvm_2samp.test_list_inputc                 C   s>   g d}g d}t ||}t|jddd t|jddd d S )N)	gffffff@g @r   gffffff!@皙"@g#@g333333$@g333333%@gffffff&@)g@g@g@      @333333@gffffff @g333333"@g#@g%@g&@g      '@g(@g      )@g*@g333333-@gS㥛?r.   r/   g
ףp=
?rO   )r   r   rE   rF   r   r    r!   rr$   r$   r%   test_example_conover[  s
    
z"TestCvm_2samp.test_example_conoverzstatistic, m, n, pval))i  r)   r*   gcj`?)ii  r,   r,   gtE]t?)i@  r(   r*   g88?)i  r*   r,   gXwS?c                 C   s   t t|||| d S r   )r   r   )r   rE   r   ri   Zpvalr$   r$   r%   test_exact_pvaluee  s    	zTestCvm_2samp.test_exact_pvaluec                 C   s   t jd tjjdd}tjjdd}t||}td|j  k oHdk n   t||d }td|j  k otdk n   d S )Ni  r<  r   i r   r   rm   )	r   r5   r6   r   rg   r(  r   r   rF   r|  r$   r$   r%   test_large_samplep  s    
zTestCvm_2samp.test_large_samplec                 C   sd   t jd t jd}t jd}t||dd}t||dd}t|j|j t|j|jdd d S )	Nr   r,   r-   r   r   r   rO   r/   )	r   r5   r6   r   r   r   rE   r   rF   rw  r$   r$   r%   test_exact_vs_asymptotic{  s    z&TestCvm_2samp.test_exact_vs_asymptoticc                 C   st   t d}g d}t||dd}t||dd}t|j|j t d}t||dd}t||dd}t|j|j d S )NrD   )rQ   g@g333333*@r   r   r   r[  r   )r   r7   r   r   rF   rw  r$   r$   r%   test_method_auto  s    

zTestCvm_2samp.test_method_autoc                 C   sV   t d}t||}t|j|jfd t|d d |d d }t|j|jfd d S )NrE  r  r(   )r   r7   r   r   rE   rF   )r   r    rG   r$   r$   r%   test_same_input  s
    

zTestCvm_2samp.test_same_inputN)rJ   rK   rL   rl   rx  r~  r  r  r  r  r  r  r  r  r$   r$   r$   r%   ru  H  s   

	ru  c                   @   s.  e Zd Zg dg dg dfZg dg dg dfZg dg dg dfZdZdZd	Ze	j
jd
eedfeedfeedffg dddd ZdZdZe	j
jd
eedfeedffddgddd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Ze	j
d%d&d'd( Ze	j
d)g d*d+d, Zd-d. Zd/S )0TestTukeyHSD)r        7@ffffff:@皙;@fffff=@)ffffff<@皙A@     =@皙@@皙>@)g:@gL<@gL8@g333333:@g;@)r   r  gHzG:@r  r  r  r  r  )r   r  r  )
r  r  r  r  r  r  r  r  r  r  aK  
    Comparison LowerCL Difference UpperCL Significance
    2 - 3	0.6908830568	4.34	7.989116943	    1
    2 - 1	0.9508830568	4.6 	8.249116943 	1
    3 - 2	-7.989116943	-4.34	-0.6908830568	1
    3 - 1	-3.389116943	0.26	3.909116943	    0
    1 - 2	-8.249116943	-4.6	-0.9508830568	1
    1 - 3	-3.909116943	-0.26	3.389116943	    0
    aS  
    Comparison LowerCL Difference UpperCL Significance
    2 - 1	0.2679292645	3.645	7.022070736	    1
    2 - 3	0.5934764007	4.34	8.086523599	    1
    1 - 2	-7.022070736	-3.645	-0.2679292645	1
    1 - 3	-2.682070736	0.695	4.072070736	    0
    3 - 2	-8.086523599	-4.34	-0.5934764007	1
    3 - 1	-4.072070736	-0.695	2.682070736	    0
    aS  
    Comparison LowerCL Difference UpperCL Significance
    2 - 3	1.561605075	    4.34	7.118394925	    1
    2 - 1	2.740784879	    6.08	9.419215121	    1
    3 - 2	-7.118394925	-4.34	-1.561605075	1
    3 - 1	-1.964526566	1.74	5.444526566	    0
    1 - 2	-9.419215121	-6.08	-2.740784879	1
    1 - 3	-5.444526566	-1.74	1.964526566	    0
    zdata,res_expect_str,atolrR   g|=)equal size samplezunequal sample sizezextreme sample size differences)Zidsc                 C   s   t j|dd dd tdd}tj| }| }|D ]\}}}	}
}}t	|d t	|d  }}t
|j||f |	|d t
|j||f |
|d t
|j||f ||d t
|j||f d	k|dk q>dS )
a  
        SAS code used to generate results for each sample:
        DATA ACHE;
        INPUT BRAND RELIEF;
        CARDS;
        1 24.5
        ...
        3 27.8
        ;
        ods graphics on;   ODS RTF;ODS LISTING CLOSE;
           PROC ANOVA DATA=ACHE;
           CLASS BRAND;
           MODEL RELIEF=BRAND;
           MEANS BRAND/TUKEY CLDIFF;
           TITLE 'COMPARE RELIEF ACROSS MEDICINES  - ANOVA EXAMPLE';
           ods output  CLDiffs =tc;
        proc print data=tc;
            format LowerCL 17.16 UpperCL 17.16 Difference 17.16;
            title "Output with many digits";
        RUN;
        QUIT;
        ODS RTF close;
        ODS LISTING;
         -  r)   NZdtype)r*   r*   r   r/   rP   r   asarrayreplacesplitfloatr)  r   	tukey_hsdconfidence_intervalintr   lowrE   highrF   )r   datares_expect_strr0   
res_expect	res_tukeyconfr   jlr,  hsigr$   r$   r%   test_compare_sas  s    !
zTestTukeyHSD.test_compare_sasz
        1	2	-8.2491590248597	-4.6	-0.9508409751403	0.0144483269098
        1	3	-3.9091590248597	-0.26	3.3891590248597	0.9803107240900
        2	3	0.6908409751403	4.34	7.9891590248597	0.0203311368795
        z
        1	2	-7.02207069748501	-3.645	-0.26792930251500 0.03371498443080
        1	3	-2.68207069748500	0.695	4.07207069748500 0.85572267328807
        2	3	0.59347644287720	4.34	8.08652355712281 0.02259047020620
        r   r\  r  zunequal size samplec                 C   s   t j| tdd}tj| }| }|D ]\}}}	}
}}t|d t|d  }}t	|j
||f |	|d t	|j||f |
|d t	|j||f ||d t	|j||f ||d q.dS )an  
        vals = [24.5, 23.5,  26.4, 27.1, 29.9, 28.4, 34.2, 29.5, 32.2, 30.1,
         26.1, 28.3, 24.3, 26.2, 27.8]
        names = {'zero', 'zero', 'zero', 'zero', 'zero', 'one', 'one', 'one',
         'one', 'one', 'two', 'two', 'two', 'two', 'two'}
        [p,t,stats] = anova1(vals,names,"off");
        [c,m,h,nms] = multcompare(stats, "CType","hsd");
        r  r   r*   r   r/   N)r   r  r  r  r)  r   r  r  r  r   r  rE   r  rF   )r   r  r  r0   r  r  r  r   r  r  r,  r  r#   r$   r$   r%   test_compare_matlab   s    

z TestTukeyHSD.test_compare_matlabc                 C   s   d}t j|dd dd tdd}g dg d	g d
f}tj| }| }|D ]\}}}}	}
}t	|d t	|d  }}t
|j||f |	dd t
|j||f |dd t
|j||f |
dd t
|j||f |dd qXdS )a+  
        Testing against results and p-values from R:
        from: https://www.rdocumentation.org/packages/stats/versions/3.6.2/
        topics/TukeyHSD
        > require(graphics)
        > summary(fm1 <- aov(breaks ~ tension, data = warpbreaks))
        > TukeyHSD(fm1, "tension", ordered = TRUE)
        > plot(TukeyHSD(fm1, "tension"))
        Tukey multiple comparisons of means
        95% family-wise confidence level
        factor levels have been ordered
        Fit: aov(formula = breaks ~ tension, data = warpbreaks)
        $tension
        z
                diff        lwr      upr     p adj
        2 - 3  4.722222 -4.8376022 14.28205 0.4630831
        1 - 3 14.722222  5.1623978 24.28205 0.0014315
        1 - 2 10.000000  0.4401756 19.55982 0.0384598
        r  r  r)   Nr  r  )   r3   6   r  F   4   3   r  C   r^   r        r     )   rD   ,   )r  r[  r  r  re   r  r   r3   $   *   r  r  r   rC  r4   r[  rC  r  )r  r[  re  r  r+   rB  r4   rE  r  rD   r[  re  r  rr   rE  rE  r   r4   r   r\  r/   ro   gh㈵>r  )r   Zstr_resr  r  r  r  r   r  r,  r  r  r#   r$   r$   r%   test_compare_r  s$    
zTestTukeyHSD.test_compare_rc                 C   s   g d}g d}g d}g d}t ||||}| }tg dg dg dg dg}tg d	g d
g dg dg}dD ]H\}	}
t|j|	|
f ||	|
f dd t|j|	|
f ||	|
f dd qdS )zp
        Example sourced from:
        https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm
        )皙@g@333333@gffffff@g      @)g @r{  g333333@gffffff"@rz  )g       @g      %@g333333 @r  ry  )r  gffffff@gffffff@gffffff@g@)r   r   r   g      )g(\?r   gq=
ףpgp=
ף?)gGz?r   r   g
ףp=
?)r   r   r   r   )r   r   r   gzG?)gzG@r   g      ?g=
ףp=@)g=
ףp=@r   r   g@)r   r   )r'   r   )r   r   )r   r'   r  rO   r/   N)r   r  r  r   r  r   r  r  )r   Zgroup1Zgroup2Zgroup3Zgroup4rG   r  lowerupperr   r  r$   r$   r%   test_engineering_stat_handbookC  s*     z+TestTukeyHSD.test_engineering_stat_handbookc                 C   s   t jd t jdd}tj| }| }t|j|j	j
  tt |j	|j	d  tt |j|jd  t|j|jj
  tt |jd t|j|jj
 tt |jd d S )Nr2   r   r`   r   r   r   r   )r   r5   r6   r   r   r  r  r   r  r  r"  ZdiagonalrE   rF   )r   r  rG   r  r$   r$   r%   test_rand_symm]  s    
zTestTukeyHSD.test_rand_symmc                 C   sL   t tdd, tg ddtjgg d W d    n1 s>0    Y  d S )Nz...must be finite.r   r   r'   )r*   r,   r   )r>   r?   r   r  r   rB   rT   r$   r$   r%   test_no_infp  s    zTestTukeyHSD.test_no_infc                 C   sR   t tdd2 tddgddggddgg d W d    n1 sD0    Y  d S )Nz...must be one-dimensionalr   r   r'   r   r)   )r)   r   r*   r>   r?   r   r  rT   r$   r$   r%   
test_is_1dt  s    zTestTukeyHSD.test_is_1dc                 C   sF   t tdd& tg ddgg d W d    n1 s80    Y  d S )Nz...must be greater than oner   r'   r)   )r(   r)   r*   r  rT   r$   r$   r%   test_no_emptyx  s    zTestTukeyHSD.test_no_emptynargsr   c                 C   sD   t tdd$ tjg dg|   W d    n1 s60    Y  d S )Nz...more than 1 treatment.r   r   r,   r   r  )r   r  r$   r$   r%   test_not_enough_treatments|  s    z'TestTukeyHSD.test_not_enough_treatmentscl)r  r   r   r'   c                 C   sT   t tdd4 tg dddgddg}|| W d    n1 sF0    Y  d S )Nzmust be between 0 and 1r   r  r   r(   r   )r>   r?   r   r  r  )r   r  r}  r$   r$   r%   test_conf_level_invalid  s    z$TestTukeyHSD.test_conf_level_invalidc                 C   sP   t j| jd d  }t j| jd d  }t|j|jd  t|j|jd  d S )Nr'   r   r  )r   r  data_diff_sizeZ	ttest_indr   rF   )r   r  Z	res_ttestr$   r$   r%   test_2_args_ttest  s    zTestTukeyHSD.test_2_args_ttestN)rJ   rK   rL   Zdata_same_sizer  Zextreme_sizeZsas_same_sizeZsas_diff_sizeZsas_extremer  r  r  r  Zmatlab_sm_sizZmatlab_diff_szr  r  r  r  r  r  r  r  r  r  r$   r$   r$   r%   r    sZ   



%
)

r  c                   @   s   e Zd Zejdg dg dfdd Zejdg dg dg d	g d
g dg dg dg dfdd Zdd Zdd Z	dd Z
dS )TestPoissonMeansTestzc1, n1, c2, n2, p_expect)r   r`   r   r`   gea?)r'   r`   r*   r`   g	c?c                 C   s$   t ||||}t|j|dd d S )NrR   r/   r   poisson_means_testr   rF   )r   c1n1c2n2p_expectrG   r$   r$   r%   test_paper_examples  s    z(TestPoissonMeansTest.test_paper_examplesz c1, n1, c2, n2, p_expect, alt, d)rD   r+   rD   r+   g{}?r   r   )r+   r+   r+   r+   goPF?r   r   )2   rE  r   r   gae?r   rP   )r   r`   rD   rZ  g/V-=?r   r   )r   re   r(   rD   g")?r   r   )r(   rD   r   r`   g_'Qm~?r   r   )r(   rD   r   r+   g|?r   r   )r   r   r  rE  g0ݷ?r   r   c           	      C   s,   t j||||||d}t|j|ddd d S )N)r   diffg>gؗҜ<r0   r   r  )	r   r  r  r  r  r  ZaltdrG   r$   r$   r%   test_fortran_authors  s    z)TestPoissonMeansTest.test_fortran_authorsc                 C   s0   d\}}d\}}t ||||}t|jd d S )N)ra   ra   r   r  r   count1count2nobs1nobs2rG   r$   r$   r%   test_different_results  s    z+TestPoissonMeansTest.test_different_resultsc                 C   s0   d\}}d\}}t ||||}t|jd d S )Nr  rc  r   r  r  r$   r$   r%   test_less_than_zero_lambda_hat2  s    z4TestPoissonMeansTest.test_less_than_zero_lambda_hat2c                 C   s  d\}}d\}}d}t t|d  td||| W d    n1 sF0    Y  t t|d  t||d| W d    n1 s0    Y  d}t t|d  td||| W d    n1 s0    Y  t t|d  t||d| W d    n1 s0    Y  d}t t|d  t|d|| W d    n1 s@0    Y  t t|d  t|||d W d    n1 s~0    Y  d	}t t|d$ tj||||dd
 W d    n1 s0    Y  d}t t|d$ tjdddddd W d    n1 s
0    Y  d S )Nr  rc  z`k1` and `k2` must be integers.r   rw   z1`k1` and `k2` must be greater than or equal to 0.r   z%`n1` and `n2` must be greater than 0.z(diff must be greater than or equal to 0.)r  zAlternative must be one of ...r   r'   errorr   )r>   	TypeErrorr   r  r?   )r   r  r  r  r  r/  r$   r$   r%   r     s.    ....004z*TestPoissonMeansTest.test_input_validationN)rJ   rK   rL   r  r  r  r  r  r  r  r   r$   r$   r$   r%   r    s&   

	r  c                   @   s`   e Zd Zdd Zdd Zejdg ddd Zejdg d	d
d Z	dd Z
dd ZdS )TestBWSTestc                 C   sn  t jd}|jdd\}}d}tjt|d$ t||g||g W d    n1 sX0    Y  d}tjt|d  tt jg| W d    n1 s0    Y  d}tjt|d t|g  W d    n1 s0    Y  d}tjt|d  tj||d	d
 W d    n1 s0    Y  d}tjt|d  tj||dd W d    n1 s`0    Y  d S )N   <ovT{ r'   r,   r   z,`x` and `y` must be exactly one-dimensional.r   z"`x` and `y` must not contain NaNs.z$`x` and `y` must be of nonzero size.zalternative` must be one of...r6  r   z!method` must be an instance of...r  r   )	r   r5   r   r  r   r?   r   bws_testr   )r   r   r    r!   r/  r$   r$   r%   test_bws_input_validation  s"    2.*0z%TestBWSTest.test_bws_input_validationc                 C   s@   g d}g d}t j||dd}t|jddd t|jd d S )	N)r   r'   r   r(   r*   r,   r-   )r)   r   r+   rq   re   rr   r  r   r   gI+@r.   r/   gf$/g?)r   r  r   rE   r   rF   r4  r$   r$   r%    test_against_published_reference  s
    z,TestBWSTest.test_against_published_reference)r   rE   rF   ))r   g
-?g4B/?)r   
-g0&v?)r   r  g(?c                 C   sR   t jd}|jdd\}}tj|||d}t|j|dd t|j|ddd	 d S )
Nr  r  r   r   vIh%<=r   rO   rm   r  r   r5   r   r   r  r   rE   rF   r   r   rE   rF   r   r    r!   rG   r$   r$   r%   test_against_R	  s
    zTestBWSTest.test_against_R))r   gD5H?gdԕ?)r   `ч?gȲךX?)r   r  g4)?c                 C   sZ   t jd}|jdd}|jdd}tj|||d}t|j|dd t|j|dd	d
 d S )Nl   .sZ r   r   r-   r   r  r   rO   rm   r  r  r  r$   r$   r%   test_against_R_imbalanced  s    z%TestBWSTest.test_against_R_imbalancedc                 C   s   t jd}|jdd\}}t jd}tjd|d}tj|||d}t|jdksXJ t jd}tjd|d}tj|||d}t|j|j t jd}tjd|d}tj|||d}t 	|j|jrJ d S )N   /HN( )r'   r+   r   r+   )Zn_resamplesZrandom_stater   l   VC	A )
r   r5   r   r   r  r  r   null_distributionr   Zallclose)r   r   r    r!   r   r   r   r   r$   r$   r%   test_method,  s    zTestBWSTest.test_methodc                 C   s   t jd}|jdd}|d }tj||dd}|jdks>J t|jdt|j	  tj||dd}|jdksrJ t|jd tj||dd}|jdk sJ t|jdt|j	  tj||dd}|jdk sJ t|jd d S )	Nr  r)   r   r   r   r   r   r   )
r   r5   r   r   r  rE   r   rF   r   r  )r   r   r    r!   rG   r$   r$   r%   test_directionsC  s    zTestBWSTest.test_directionsN)rJ   rK   rL   r  r  r  r  r  r  r  r  r  r$   r$   r$   r%   r    s   


r  ).	itertoolsr   numpyr   r5   r  r  Znumpy.testingr   r   r   r   r   r>   Zscipy.statsr   r   Zscipy.stats._hypotestsr	   r
   r   r   r   r   r   Zscipy.stats._mannwhitneyur   r   Zcommon_testsr   Zscipy._lib._testutilsr   r   rM   r~   r  r  Zxslowr
  r  r@  r_  ru  r  r  r  r$   r$   r$   r%   <module>   sB   $4Z   l
  o  T tT