a
    BCCfN                     @   s&  d dl Zd dlZd dlm  mZ d dlm	Z	 dZ
eede
Zeede
 Zedej Zedej ZdZedZejd Zejd Zejd	 Zg d
Zdd Zdd Zd&ddZd'ddZdd Zd(ddZd)ddZ d*ddZ!dd Z"dd Z#d+d d!Z$d"d# Z%d,d$d%Z&dS )-    N)_derivative         i<         )gSˆBgAAz?g}<ٰj_g#+K?g88CgJ?gllfgUUUUUU?c                 C   s6   d|  }t | d |  td  |t t||    S )N      ?r   )nplog_LOG_2PIZpolyval_STIRLING_COEFFS)nZrn r   P/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/stats/_ksstats.py_log_nfactorial_div_n_pow_n]   s    r   c                 C   s   t | ddS )z%clips a probability to range 0<=p<=1.        r	   )r
   Zclip)pr   r   r   
_clip_probg   s    r   Tc                 C   s   t || |}t|S )z>Selects either the CDF or SF, and then clips to range 0<=p<=1.)r
   wherer   )cdfprobZsfprobcdfr   r   r   r   _select_and_clip_probl   s    r   c                 C   s`  |dkrt dd|S | | }|dkr0t dd|S tt|}|| }d| d }t||g}td|d }d||  }	t|}
d}|D ],}||
|d < || }|	|d   |9  < qtd| d d| d||   }d| | |	d< td|D ](}|
d|| d  ||d d|f< q|	|dddf< tj	|	dd	|dddf< t
t|d }| }d}d}|dkr|d rt||}||7 }t||}|d9 }t||d |d f tkr|t }|t7 }|d }ql||d |d f }td| d D ]2}|| |  }t|tk r|t9 }|t8 }q|dkrPt||}t |d| |S )
zComputes the Kolmogorov CDF:  Pr(D_n <= d) using the MTW approach to
    the Durbin matrix algorithm.

    Durbin (1968); Marsaglia, Tsang, Wang (2003). [1], [3].
    r	   r         ?r   r   r   N)Zaxis)r   intr
   ceilzerosarangeemptymaxrangeflipeyeshapematmulabs_EP128_E128_EM128ldexp)r   dr   ndkhmHZintmvwZfacjttiZHpwrnnexpntZHexpntr   r   r   r   _kolmogn_DMTWr   s\    
"&

 
r8   c           	      C   s   | dkr&| | d || d  }}nt | d d\}}|dkr||d krp|| | d || | d  }}q|d | | d || d | d  }}n"|d | d || | d  }}t|d dt||fS )z0Compute the endpoints of the interval for row i.r   r   r   )divmodr    min)	r5   r   llceilfroundfj1j2Zip1div2Zip1mod2r   r   r   _pomeranz_compute_j1j2   s    $,"r@   c                  C   s  | | }t t|}d||  }t|d| }|dkr<dnd}|dkrLdnd}d|d  }	t|	}
t|	}t|	}d|
d< d|d< d|d< d}||  d| |  dd|  |    }}}td|	D ]L}|
|d  | | |
|< ||d  | | ||< ||d  | | ||< qt|	g}t|	g}d|d< d\}}td| |||\}}tdd|  d D ]}|}|| }}|| }}|d t|| |||\}}|dks|d|  d kr|
}n|d r|n|}|| d }|dkrdt	||| || |  |d| }|| }|| d }||||  |d|< dt
|  k r\tk rpn n|t9 }|t8 }|| | }qd|| |  }td| d D ].}t|tkr|t9 }|t7 }||9 }q|dkrt||}t|d| |}|S )	z[Computes Pr(D_n <= d) using the Pomeranz recursion algorithm.

    Pomeranz (1974) [2]
    r	   r   r   r   r   )r   r   r   N)r   r
   floorr:   r   r!   r   r@   fillZconvolver    r)   r'   r(   r&   r*   r   ) r   xr   tr;   fgr<   r=   ZnpwrsZgpowerZ	twogpowerZonem2gpowerr7   Zg_over_nZtwo_g_over_nZone_minus_two_g_over_nr/   ZV0ZV1ZV0sZV1sr>   r?   r5   Zk1ZpwrsZln2convZ
conv_startZconv_lenZansr   r   r   _kolmogn_Pomeranz   sj    


(



("
rH   c           %   	   C   s0  |dkrt dd|dS |dkr,t dd|dS t| | }|d |d |d |d f\}}}}t d | }|tk rt dd|dS t|}	| }
td }d| d|  }d| d	|  t d }td
d|   d }td	d|   d }td| d|   d }td| d|   d }d| d|d   }td}t	t
d| tj }t|ddD ]}d| d
 }|d |d |d   }}}t|	d| }td|
||  |||  ||  |||  ||  ||  g}||9 }||7 }q\||	9 }|t9 }|t|d| d|d  d|d  g }tt d | }	t|dd}|d }t| }tj| }|	| } t||  }!|!tt d|  9 }!|d  |!7  < t|| ||  | |  }"|"tt d|  9 }"|d  |"7  < t| d tt|d }#||# }|s$|d9 }|d  d
7  < t|}$|$S )aP  Computes the Pelz-Good approximation to Prob(Dn <= x) with 0<=x<=1.

    Start with Li-Chien, Korolyuk approximation:
        Prob(Dn <= x) ~ K0(z) + K1(z)/sqrt(n) + K2(z)/n + K3(z)/n**1.5
    where z = x*sqrt(n).
    Transform each K_(z) using Jacobi theta functions into a form suitable
    for small z.
    Pelz-Good (1976). [6]
    r   r	   r   r   r   r   r         r         @   i      `   iZ   r   r   H      iP  
   i          @)r   r
   sqrt_PI_SQUARED_MIN_LOGexp_PI_FOUR_PI_SIXr   r   r   pir!   powerarray_SQRT2PIr   _SQRT3sumlen)%r   rC   r   zZzsquaredZzthreeZzfourZzsixZqlogqZk1aZk1bZk2aZk2bZk2cZk3dZk3cZk3bZk3aZK0to3Zmaxkr-   r/   ZmsquaredZmfourZmsixZqpowerZcoeffsksZksquaredZsqrt3zZkspiZqpwersZk2extraZk3extraZpowers_of_nZKsumr   r   r   _kolmogn_PelzGood#  sl    
$


*
rh   c                 C   s`  t | r| S t| | ks"| dkr(t jS |dkr>tdd|dS |dkrTtdd|dS | | }|dkr|dkrztdd|dS | dkrt t d| d d|   d| d  }n$t t| | t 	d| d   }t|d| |dS || d krdd| |   }td| ||dS |dkrBdt
j| | }td| ||dS || }| dkr|d	kr~t| |d
d}t|d| |dS |dkrt| |d
d}t|d| |dS dt
j| | }td| ||dS |s|dkrdS |dkrdt
j| | }t|S |dkrd}n:| dkr@| |d  dkr@t| |d
d}nt| |d
d}t|d| |dS )zComputes the CDF(or SF) for the two-sided Kolmogorov-Smirnov statistic.

    x must be of type float, n of type integer.

    Simard & L'Ecuyer (2011) [7].
    r   r	   r   rI   r      r   r   g0q&?Tr   g      w@g@g      2@i g      ?gffffff?)r
   isnanr   nanr   prodr   r[   r   r   scipyspecialZsmirnovr8   rH   r   rh   )r   rC   r   rD   ZprobZ	nxsquaredr   r   r   r   _kolmognv  sX    
,$






ro   c                    sF  t  r S t  ks" dkr(t jS |dks8|dkr<dS  | }|dkr|dkrXdS  dkrt t d d   d| d  }n(t t  d t d| d   }|d  d  S | d krdd|  d     S |dkrdt	j
j|  S |d }t||d   }t|d| } fd	d
}t|||ddS )zvComputes the PDF for the two-sided Kolmogorov-Smirnov statistic.

    x must be of type float, n of type integer.
    r   r	   r   r   ri   r   r   g      @c                    s
   t  | S N)kolmogn)_xr   r   r   _kk  s    z_kolmogn_p.<locals>._kkrK   )Zdxorder)r
   rj   r   rk   rl   r   r[   r   r   rm   statsZksoneZpdfr:   r   )r   rC   rD   Zprddeltart   r   rs   r   
_kolmogn_p  s.    
((
rx   c                    s   t  r S t  ks" dkr(t jS dkr8d  S |dkrDdS t t tj d    }|d  kr|d   d S t 	t |d    }|dd   kr|S t
t   }t|dd   } fdd}tjj|d  |dd	S )
zeComputes the PPF/ISF of kolmogn.

    n of type integer, n>= 1
    p is the CDF, q the SF, p+q=1
    r   r	   r   r   rW   c                    s   t  |  S rp   )ro   )rC   r   r   r   r   _f  s    z_kolmogni.<locals>._fg+=)Zxtol)r
   rj   r   rk   r[   r   rm   rn   Zloggammaexpm1scuZ	_kolmogcirX   r:   optimizeZbrentq)r   r   rf   rw   rC   x1rz   r   ry   r   	_kolmogni  s$    
$r   c           	      C   s   t j| ||dgdt jt jt jgd}|D ]P\}}}}t |rH||d< q(t||krbtd| tt|||d|d< q(|jd }|S )a  Computes the CDF for the two-sided Kolmogorov-Smirnov distribution.

    The two-sided Kolmogorov-Smirnov distribution has as its CDF Pr(D_n <= x),
    for a sample of size n drawn from a distribution with CDF F(t), where
    :math:`D_n &= sup_t |F_n(t) - F(t)|`, and
    :math:`F_n(t)` is the Empirical Cumulative Distribution Function of the sample.

    Parameters
    ----------
    n : integer, array_like
        the number of samples
    x : float, array_like
        The K-S statistic, float between 0 and 1
    cdf : bool, optional
        whether to compute the CDF(default=true) or the SF.

    Returns
    -------
    cdf : ndarray
        CDF (or SF it cdf is False) at the specified locations.

    The return value has shape the result of numpy broadcasting n and x.
    N)Z	op_dtypes.n is not integral: rI   r   )	r
   nditerZfloat64Zbool_rj   r   
ValueErrorro   operands)	r   rC   r   it_nrr   _cdfre   resultr   r   r   rq     s    

rq   c                 C   sn   t | |dg}|D ]J\}}}t |r2||d< qt||krLtd| tt|||d< q|jd }|S )a  Computes the PDF for the two-sided Kolmogorov-Smirnov distribution.

    Parameters
    ----------
    n : integer, array_like
        the number of samples
    x : float, array_like
        The K-S statistic, float between 0 and 1

    Returns
    -------
    pdf : ndarray
        The PDF at the specified locations

    The return value has shape the result of numpy broadcasting n and x.
    N.r   r   )r
   r   rj   r   r   rx   r   )r   rC   r   r   rr   re   r   r   r   r   kolmognp  s    

r   c                 C   s   t | ||dg}|D ]n\}}}}t |r6||d< qt||krPtd| |r`|d| fn
d| |f\}}	tt|||	|d< q|jd }
|
S )a  Computes the PPF(or ISF) for the two-sided Kolmogorov-Smirnov distribution.

    Parameters
    ----------
    n : integer, array_like
        the number of samples
    q : float, array_like
        Probabilities, float between 0 and 1
    cdf : bool, optional
        whether to compute the PPF(default=true) or the ISF.

    Returns
    -------
    ppf : ndarray
        PPF (or ISF if cdf is False) at the specified locations

    The return value has shape the result of numpy broadcasting n and x.
    N.r   r   r   )r
   r   rj   r   r   r   r   )r   rf   r   r   r   Z_qr   re   Z_pcdfZ_psfr   r   r   r   kolmogni;  s    
 
r   )T)T)T)T)T)T)T)'numpyr
   Zscipy.specialrm   Zscipy.special._ufuncsrn   Z_ufuncsr|   Zscipy._lib._finite_differencesr   r(   r*   Z
longdoubler'   r)   rX   r^   ra   r   r   rZ   rb   rY   r\   r]   r   r   r   r   r8   r@   rH   rh   ro   rx   r   rq   r   r   r   r   r   r   <module>D   s6   






K
T
S
<*
%