a
    CCCfu                     @   s8   d dl Zd dlZddgZeddZd	ddZdd ZdS )
    Nsave_npzload_npzF)Zallow_pickleTc                 C   s   i }|j dv r"|j|j|jd nN|j dkr<|j|jd n4|j dkrZ|j|j|jd nd|j  d}t||j|j d	|j	|j
d
 t|tjjr|jdd |rtj| fi | ntj| fi | dS )a   Save a sparse matrix or array to a file using ``.npz`` format.

    Parameters
    ----------
    file : str or file-like object
        Either the file name (string) or an open file (file-like object)
        where the data will be saved. If file is a string, the ``.npz``
        extension will be appended to the file name if it is not already
        there.
    matrix: spmatrix or sparray
        The sparse matrix or array to save.
        Supported formats: ``csc``, ``csr``, ``bsr``, ``dia`` or ``coo``.
    compressed : bool, optional
        Allow compressing the file. Default: True

    See Also
    --------
    scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format.
    numpy.savez: Save several arrays into a ``.npz`` archive.
    numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive.

    Examples
    --------
    Store sparse matrix to disk, and load it again:

    >>> import numpy as np
    >>> import scipy as sp
    >>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
    >>> sparse_matrix
    <2x3 sparse matrix of type '<class 'numpy.int64'>'
       with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    >>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
    >>> sparse_matrix = sp.sparse.load_npz('/tmp/sparse_matrix.npz')

    >>> sparse_matrix
    <2x3 sparse matrix of type '<class 'numpy.int64'>'
       with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)
    ZcscZcsrZbsr)indicesindptrdia)offsetscoo)rowcolz4Save is not implemented for sparse matrix of format .ascii)formatshapedataT)	_is_arrayN)r   updater   r   r   r
   r   NotImplementedErrorencoder   r   
isinstancespsparseZsparraynpZsavez_compressedZsavez)filematrix
compressedZarrays_dictmsg r   S/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/sparse/_matrix_io.pyr      s&    .



c                 C   s  t j| fi tl}|d}|du r8td|  d| }t|tsT|d}|drh|d }n|d }zt	t
j| }W n6 ty } ztd	| d
|W Y d}~n
d}~0 0 |dv r||d |d |d f|d dW  d   S |dkr&||d |d f|d dW  d   S |dkrb||d |d |d ff|d dW  d   S td| dW d   n1 s0    Y  dS )a   Load a sparse array/matrix from a file using ``.npz`` format.

    Parameters
    ----------
    file : str or file-like object
        Either the file name (string) or an open file (file-like object)
        where the data will be loaded.

    Returns
    -------
    result : csc_array, csr_array, bsr_array, dia_array or coo_array
        A sparse array/matrix containing the loaded data.

    Raises
    ------
    OSError
        If the input file does not exist or cannot be read.

    See Also
    --------
    scipy.sparse.save_npz: Save a sparse array/matrix to a file using ``.npz`` format.
    numpy.load: Load several arrays from a ``.npz`` archive.

    Examples
    --------
    Store sparse array/matrix to disk, and load it again:

    >>> import numpy as np
    >>> import scipy as sp
    >>> sparse_array = sp.sparse.csc_array([[0, 0, 3], [4, 0, 0]])
    >>> sparse_array
    <2x3 sparse array of type '<class 'numpy.int64'>'
       with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_array.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    >>> sp.sparse.save_npz('/tmp/sparse_array.npz', sparse_array)
    >>> sparse_array = sp.sparse.load_npz('/tmp/sparse_array.npz')

    >>> sparse_array
    <2x3 sparse array of type '<class 'numpy.int64'>'
        with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_array.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    In this example we force the result to be csr_array from csr_matrix
    >>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
    >>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
    >>> tmp = sp.sparse.load_npz('/tmp/sparse_matrix.npz')
    >>> sparse_array = sp.sparse.csr_array(tmp)
    r   Nz	The file z+ does not contain a sparse array or matrix.r   r   Z_arrayZ_matrixzUnknown format ""r   r   r   r   r   )r   r   r   r	   r
   r   z4Load is not implemented for sparse matrix of format r   )r   loadPICKLE_KWARGSget
ValueErroritemr   strdecodegetattrr   r   AttributeErrorr   )r   ZloadedZsparse_formatZsparse_typeclser   r   r   r   P   s:    6




(

)T)	numpyr   Zscipyr   __all__dictr!   r   r   r   r   r   r   <module>   s
   

E