a
    BCCfs=                     @   s  d dl mZmZmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZ ddlmZmZ ddlmZmZmZ d dlmZ g dZd'dd	Zi Zd
d Zdd Zdd Z dd Z!dd Z"dd Z#dd Z$dd Z%dd Z&d(ddZ'd)dd Z(d*d"d#Z)d+d$d%Z*d&S ),    )asarraypi
zeros_likearrayarctan2tanonesarangefloorr_
atleast_1dsqrtexpgreatercosaddsin   )	cspline2dsepfir2d)lfiltersosfiltlfiltic)BSpline)spline_filtergauss_spline	cspline1d	qspline1dcspline1d_evalqspline1d_eval      @c           	      C   s   | j j}tg ddd }|dv rp| d} t| j|}t| j|}t|||}t|||}|d|  |}n2|dv rt| |}t|||}||}ntd|S )	a4  Smoothing spline (cubic) filtering of a rank-2 array.

    Filter an input data set, `Iin`, using a (cubic) smoothing spline of
    fall-off `lmbda`.

    Parameters
    ----------
    Iin : array_like
        input data set
    lmbda : float, optional
        spline smooghing fall-off value, default is `5.0`.

    Returns
    -------
    res : ndarray
        filtered input data

    Examples
    --------
    We can filter an multi dimensional signal (ex: 2D image) using cubic
    B-spline filter:

    >>> import numpy as np
    >>> from scipy.signal import spline_filter
    >>> import matplotlib.pyplot as plt
    >>> orig_img = np.eye(20)  # create an image
    >>> orig_img[10, :] = 1.0
    >>> sp_filter = spline_filter(orig_img, lmbda=0.1)
    >>> f, ax = plt.subplots(1, 2, sharex=True)
    >>> for ind, data in enumerate([[orig_img, "original image"],
    ...                             [sp_filter, "spline filter"]]):
    ...     ax[ind].imshow(data[0], cmap='gray_r')
    ...     ax[ind].set_title(data[1])
    >>> plt.tight_layout()
    >>> plt.show()

    )      ?g      @r!   f      @)FDr$   y              ?)r"   dzInvalid data type for Iin)	dtypecharr   astyper   realimagr   	TypeError)	ZIinZlmbdaZintypeZhcolZckrZckiZoutrZoutiout r.   R/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/signal/_bsplines.pyr      s    &

r   c                 C   s>   t | } |d d }dtdt |  t| d  d |  S )a  Gaussian approximation to B-spline basis function of order n.

    Parameters
    ----------
    x : array_like
        a knot vector
    n : int
        The order of the spline. Must be non-negative, i.e., n >= 0

    Returns
    -------
    res : ndarray
        B-spline basis function values approximated by a zero-mean Gaussian
        function.

    Notes
    -----
    The B-spline basis function can be approximated well by a zero-mean
    Gaussian function with standard-deviation equal to :math:`\sigma=(n+1)/12`
    for large `n` :

    .. math::  \frac{1}{\sqrt {2\pi\sigma^2}}exp(-\frac{x^2}{2\sigma})

    References
    ----------
    .. [1] Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen
       F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines. In:
       Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational
       Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer
       Science, vol 4485. Springer, Berlin, Heidelberg
    .. [2] http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html

    Examples
    --------
    We can calculate B-Spline basis functions approximated by a gaussian
    distribution:

    >>> import numpy as np
    >>> from scipy.signal import gauss_spline
    >>> knots = np.array([-1.0, 0.0, -1.0])
    >>> gauss_spline(knots, 3)
    array([0.15418033, 0.6909883, 0.15418033])  # may vary

    r   g      (@   )r   r   r   r   )xnZsignsqr.   r.   r/   r   J   s    -r   c                 C   s>   t | td} tjg ddd}|| }d|| dk | dkB < |S )Nr'   )r   r   r0   FZextrapolater   r4   r0   )r   floatr   basis_elementr1   br-   r.   r.   r/   _cubic|   s
    r;   c                 C   sB   t t| td} tjg ddd}|| }d|| dk | dkB < |S )Nr3   )      g      g      ?      ?Fr6   r   r<   r=   )absr   r7   r   r8   r9   r.   r.   r/   
_quadratic   s
    r?   c                 C   s   dd|   d|  t dd|     }tt d|  d t |}d|  d t | d|   }|t d|  d|  t dd|     |  }||fS )Nr   `            0   )r   r   )ZlamxiZomegrhor.   r.   r/   _coeff_smooth   s
    $,rG   c                 C   s.   |t | ||   t || d   t| d S )Nr   r5   )r   r   )kcsrF   omegar.   r.   r/   _hc   s    "rK   c                 C   s   || d||   d||   dd| | t d|   |d   }d||  d||   t| }t| }|||  t || |t||    S )Nr   r0      )r   r   r>   r   )rH   rI   rF   rJ   Zc0gammaZakr.   r.   r/   _hs   s    " rN   c                 C   s"  t |\}}dd| t|  ||  }t| }t|}td|||| d  tt|d ||||   }td|||| d  td|||| d   tt|d ||||   }t|tdd| t| || f t||f }	|		dd}	t|dddd| t| || f }
|
	dd}
t
|
| dd  |	d\}}t|||f }tt||||t|d ||| | d d d  }tt|d |||t|d ||| | d d d  }t|tdd| t| || f t||f }	|		dd}	t
|
|dd d |	d\}}t|d d d ||f }|S )Nr   r0   r   r4   r5   zi)rG   r   lenr	   rK   r   reducer   r   Zreshaper   rN   )signallambrF   rJ   rI   KrH   Zzi_2Zzi_1rP   sosZyp_yr.   r.   r/   _cubic_smooth_coeff   sB    .$.rZ   c                 C   s$  dt d }t| }|t| }|dkrZ| d |t||    }||d  | }t|S tdtd| f tt||  }td}td| f }t	||| |d\}}	||d  ||d   }
t| td| f t|
}t
| g}t	|||dd d |d\}}	t|d d d |
f }|d S )Nr4   rB   r   r   rO   r5   r#   r   rR   r	   r   rS   r   r   r   r   r   r   rT   rP   rV   ZpowersZyplusoutputstater:   arX   Zout_lastr.   r.   r/   _cubic_coeff   s"    $r`   c                 C   s(  ddt d  }t| }|t| }|dkr^| d |t||    }||d  | }t|S tdtd| f tt||  }td}td| f }t	||| |d\}}	||d  ||d   }
t| td| f t|
}t
| g}t	|||dd d |d\}}	t|d d d |
f }|d	 S )
NrQ   r0   g       @r   r   rO   r4   r5   g       @r[   r\   r.   r.   r/   _quadratic_coeff   s"    $ra           c                 C   s   |dkrt | |S t| S dS )a  
    Compute cubic spline coefficients for rank-1 array.

    Find the cubic spline coefficients for a 1-D signal assuming
    mirror-symmetric boundary conditions. To obtain the signal back from the
    spline representation mirror-symmetric-convolve these coefficients with a
    length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .

    Parameters
    ----------
    signal : ndarray
        A rank-1 array representing samples of a signal.
    lamb : float, optional
        Smoothing coefficient, default is 0.0.

    Returns
    -------
    c : ndarray
        Cubic spline coefficients.

    See Also
    --------
    cspline1d_eval : Evaluate a cubic spline at the new set of points.

    Examples
    --------
    We can filter a signal to reduce and smooth out high-frequency noise with
    a cubic spline:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import cspline1d, cspline1d_eval
    >>> rng = np.random.default_rng()
    >>> sig = np.repeat([0., 1., 0.], 100)
    >>> sig += rng.standard_normal(len(sig))*0.05  # add noise
    >>> time = np.linspace(0, len(sig))
    >>> filtered = cspline1d_eval(cspline1d(sig), time)
    >>> plt.plot(sig, label="signal")
    >>> plt.plot(time, filtered, label="filtered")
    >>> plt.legend()
    >>> plt.show()

    rb   N)rZ   r`   rT   rU   r.   r.   r/   r     s    ,
r   c                 C   s   |dkrt dnt| S dS )aF  Compute quadratic spline coefficients for rank-1 array.

    Parameters
    ----------
    signal : ndarray
        A rank-1 array representing samples of a signal.
    lamb : float, optional
        Smoothing coefficient (must be zero for now).

    Returns
    -------
    c : ndarray
        Quadratic spline coefficients.

    See Also
    --------
    qspline1d_eval : Evaluate a quadratic spline at the new set of points.

    Notes
    -----
    Find the quadratic spline coefficients for a 1-D signal assuming
    mirror-symmetric boundary conditions. To obtain the signal back from the
    spline representation mirror-symmetric-convolve these coefficients with a
    length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .

    Examples
    --------
    We can filter a signal to reduce and smooth out high-frequency noise with
    a quadratic spline:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import qspline1d, qspline1d_eval
    >>> rng = np.random.default_rng()
    >>> sig = np.repeat([0., 1., 0.], 100)
    >>> sig += rng.standard_normal(len(sig))*0.05  # add noise
    >>> time = np.linspace(0, len(sig))
    >>> filtered = qspline1d_eval(qspline1d(sig), time)
    >>> plt.plot(sig, label="signal")
    >>> plt.plot(time, filtered, label="filtered")
    >>> plt.legend()
    >>> plt.show()

    rb   z.Smoothing quadratic splines not supported yet.N)
ValueErrorra   rc   r.   r.   r/   r   A  s    -
r   r!   c                 C   s  t || t| }t|| jd}|jdkr0|S t| }|dk }||d k}||B  }t| ||  ||< t| d|d  ||  ||< || }|jdkr|S t|| jd}	t|d t	d }
t
dD ]4}|
| }|d|d }|	| | t||  7 }	q|	||< |S )a  Evaluate a cubic spline at the new set of points.

    `dx` is the old sample-spacing while `x0` was the old origin. In
    other-words the old-sample points (knot-points) for which the `cj`
    represent spline coefficients were at equally-spaced points of:

      oldx = x0 + j*dx  j=0...N-1, with N=len(cj)

    Edges are handled using mirror-symmetric boundary conditions.

    Parameters
    ----------
    cj : ndarray
        cublic spline coefficients
    newx : ndarray
        New set of points.
    dx : float, optional
        Old sample-spacing, the default value is 1.0.
    x0 : int, optional
        Old origin, the default value is 0.

    Returns
    -------
    res : ndarray
        Evaluated a cubic spline points.

    See Also
    --------
    cspline1d : Compute cubic spline coefficients for rank-1 array.

    Examples
    --------
    We can filter a signal to reduce and smooth out high-frequency noise with
    a cubic spline:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import cspline1d, cspline1d_eval
    >>> rng = np.random.default_rng()
    >>> sig = np.repeat([0., 1., 0.], 100)
    >>> sig += rng.standard_normal(len(sig))*0.05  # add noise
    >>> time = np.linspace(0, len(sig))
    >>> filtered = cspline1d_eval(cspline1d(sig), time)
    >>> plt.plot(sig, label="signal")
    >>> plt.plot(time, filtered, label="filtered")
    >>> plt.legend()
    >>> plt.show()

    r3   r   r   r0   rL   )r   r7   r   r'   sizerR   r   r
   r)   intrangeclipr;   cjZnewxZdxZx0resNZcond1Zcond2Zcond3resultZjloweriZthisjZindjr.   r.   r/   r   t  s*    2


r   c                 C   s   t || | }t|}|jdkr&|S t| }|dk }||d k}||B  }t| ||  ||< t| d|d  ||  ||< || }|jdkr|S t|}	t|d td }
tdD ]4}|
| }|	d|d }|	| | t
||  7 }	q|	||< |S )a  Evaluate a quadratic spline at the new set of points.

    Parameters
    ----------
    cj : ndarray
        Quadratic spline coefficients
    newx : ndarray
        New set of points.
    dx : float, optional
        Old sample-spacing, the default value is 1.0.
    x0 : int, optional
        Old origin, the default value is 0.

    Returns
    -------
    res : ndarray
        Evaluated a quadratic spline points.

    See Also
    --------
    qspline1d : Compute quadratic spline coefficients for rank-1 array.

    Notes
    -----
    `dx` is the old sample-spacing while `x0` was the old origin. In
    other-words the old-sample points (knot-points) for which the `cj`
    represent spline coefficients were at equally-spaced points of::

      oldx = x0 + j*dx  j=0...N-1, with N=len(cj)

    Edges are handled using mirror-symmetric boundary conditions.

    Examples
    --------
    We can filter a signal to reduce and smooth out high-frequency noise with
    a quadratic spline:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import qspline1d, qspline1d_eval
    >>> rng = np.random.default_rng()
    >>> sig = np.repeat([0., 1., 0.], 100)
    >>> sig += rng.standard_normal(len(sig))*0.05  # add noise
    >>> time = np.linspace(0, len(sig))
    >>> filtered = qspline1d_eval(qspline1d(sig), time)
    >>> plt.plot(sig, label="signal")
    >>> plt.plot(time, filtered, label="filtered")
    >>> plt.legend()
    >>> plt.show()

    r   r   r0   r=   rB   )r   r   re   rR   r   r
   r)   rf   rg   rh   r?   ri   r.   r.   r/   r     s*    4


r   N)r    )rb   )rb   )r!   r   )r!   r   )+numpyr   r   r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   Z_spliner   r   Z_signaltoolsr   r   r   Zscipy.interpolater   __all__r   Z_splinefunc_cacher   r;   r?   rG   rK   rN   rZ   r`   ra   r   r   r   r   r.   r.   r.   r/   <module>   s&   L
82*""
2
3
J