a
    BCCff                      @   sV   d Z ddlZdddZdddZddd	Zdd
dZdddZdddZdddZ	dS )z-
Functions for acting on a axis of an array.
    Nc                 C   s0   t dg| j }t |||||< | t| }|S )a0  Take a slice along axis 'axis' from 'a'.

    Parameters
    ----------
    a : numpy.ndarray
        The array to be sliced.
    start, stop, step : int or None
        The slice parameters.
    axis : int, optional
        The axis of `a` to be sliced.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import axis_slice
    >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    >>> axis_slice(a, start=0, stop=1, axis=1)
    array([[1],
           [4],
           [7]])
    >>> axis_slice(a, start=1, axis=0)
    array([[4, 5, 6],
           [7, 8, 9]])

    Notes
    -----
    The keyword arguments start, stop and step are used by calling
    slice(start, stop, step). This implies axis_slice() does not
    handle its arguments the exactly the same as indexing. To select
    a single index k, for example, use
        axis_slice(a, start=k, stop=k+1)
    In this case, the length of the axis 'axis' in the result will
    be 1; the trivial dimension is not removed. (Use numpy.squeeze()
    to remove trivial axes.)
    N)slicendimtuple)astartstopstepaxisZa_sliceb r   T/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/signal/_arraytools.py
axis_slice   s    $r   c                 C   s   t | d|dS )zeReverse the 1-D slices of `a` along axis `axis`.

    Returns axis_slice(a, step=-1, axis=axis).
    r   )r	   r
   )r   )r   r
   r   r   r   axis_reverse1   s    r   c                 C   s   |dk r| S || j | d kr8td|| j | d f t| dd|d}t| |dd|d}t| d|d}t| d|d	  d|d}tjd	| | | d	| | f|d
}|S )aL  
    Odd extension at the boundaries of an array

    Generate a new ndarray by making an odd extension of `x` along an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import odd_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> odd_ext(a, 2)
    array([[-1,  0,  1,  2,  3,  4,  5,  6,  7],
           [-4, -1,  0,  1,  4,  9, 16, 23, 28]])

    Odd extension is a "180 degree rotation" at the endpoints of the original
    array:

    >>> t = np.linspace(0, 1.5, 100)
    >>> a = 0.9 * np.sin(2 * np.pi * t**2)
    >>> b = odd_ext(a, 40)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='odd extension')
    >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
    >>> plt.legend(loc='best')
    >>> plt.show()
       XThe extension length n (%d) is too big. It must not exceed x.shape[axis]-1, which is %d.r   r   r   r
   r   r   r   r	   r
   r   r
      r
   shape
ValueErrorr   npconcatenate)xnr
   left_endleft_ext	right_end	right_extextr   r   r   odd_ext9   s"    $
r$   c                 C   sz   |dk r| S || j | d kr8td|| j | d f t| |dd|d}t| d|d  d|d}tj|| |f|d}|S )	aI  
    Even extension at the boundaries of an array

    Generate a new ndarray by making an even extension of `x` along an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import even_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> even_ext(a, 2)
    array([[ 3,  2,  1,  2,  3,  4,  5,  4,  3],
           [ 4,  1,  0,  1,  4,  9, 16,  9,  4]])

    Even extension is a "mirror image" at the boundaries of the original array:

    >>> t = np.linspace(0, 1.5, 100)
    >>> a = 0.9 * np.sin(2 * np.pi * t**2)
    >>> b = even_ext(a, 40)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='even extension')
    >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
    >>> plt.legend(loc='best')
    >>> plt.show()
    r   r   r   r   r   r   r   r   r   )r   r   r
   r    r"   r#   r   r   r   even_extn   s    #r%   c           
      C   sv   |dk r| S t | dd|d}dg| j }|||< tj|| jd}|| }t | d|d}|| }tj|| |f|d}	|	S )a  
    Constant extension at the boundaries of an array

    Generate a new ndarray that is a constant extension of `x` along an axis.

    The extension repeats the values at the first and last element of
    the axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import const_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> const_ext(a, 2)
    array([[ 1,  1,  1,  2,  3,  4,  5,  5,  5],
           [ 0,  0,  0,  1,  4,  9, 16, 16, 16]])

    Constant extension continues with the same values as the endpoints of the
    array:

    >>> t = np.linspace(0, 1.5, 100)
    >>> a = 0.9 * np.sin(2 * np.pi * t**2)
    >>> b = const_ext(a, 40)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='constant extension')
    >>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
    >>> plt.legend(loc='best')
    >>> plt.show()
    r   r   r   dtyper   r   r   )r   r   r   onesr'   r   )
r   r   r
   r   Z
ones_shaper(   r    r!   r"   r#   r   r   r   	const_ext   s     'r)   c                 C   sF   |dk r| S t | j}|||< tj|| jd}tj|| |f|d}|S )a  
    Zero padding at the boundaries of an array

    Generate a new ndarray that is a zero-padded extension of `x` along
    an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend `x` at each end of the
        axis.
    axis : int, optional
        The axis along which to extend `x`. Default is -1.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal._arraytools import zero_ext
    >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
    >>> zero_ext(a, 2)
    array([[ 0,  0,  1,  2,  3,  4,  5,  0,  0],
           [ 0,  0,  0,  1,  4,  9, 16,  0,  0]])
    r   r&   r   )listr   r   zerosr'   r   )r   r   r
   Zzeros_shaper+   r#   r   r   r   zero_ext   s    
r,   Tc                 C   s4   | du r|s0t dnt| s(t dt| } | S )z
    Check if the given sampling frequency is a scalar and raises an exception
    otherwise. If allow_none is False, also raises an exception for none
    sampling rates. Returns the sampling frequency as float or none if the
    input is none.
    Nz#Sampling frequency can not be none.z.Sampling frequency fs must be a single scalar.)r   r   Zisscalarfloat)fs
allow_noner   r   r   _validate_fs   s    

r0   )NNNr   )r   )r   )r   )r   )r   )T)
__doc__numpyr   r   r   r$   r%   r)   r,   r0   r   r   r   r   <module>   s   
*

5
2
7
#