a
    BCCfy,                     @   sp   d dl Z d dlmZ ddlmZ ddlmZ g dZdd Zd	d
 ZdddZ	dddZ
dddZdddZdS )    N)normalize_axis_index   )_ni_support)	_nd_image)fourier_gaussianfourier_uniformfourier_ellipsoidfourier_shiftc                 C   s   | d u rH|j jtjtjtjfv r4tj|j|j d} qtj|jtjd} nRt| tu r| tjtjtjtjfvrtt	dtj|j| d} n| j|jkrt	d| S Ndtypezoutput type not supportedzoutput shape not correct)
r   typenumpy	complex64
complex128Zfloat32zerosshapefloat64RuntimeErroroutputinput r   R/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/ndimage/_fourier.py_get_output_fourier(   s    
r   c                 C   s   | d u rD|j jtjtjfv r0tj|j|j d} qtj|jtjd} nJt| tu rz| tjtjfvrhtdtj|j| d} n| j|jkrtd| S r
   )r   r   r   r   r   r   r   r   r   r   r   r   _get_output_fourier_complex9   s    r   c                 C   sf   t | } t|| }t|| j}t|| j}t j|t jd}|jj	sN|
 }t| ||||d |S )a  
    Multidimensional Gaussian fourier filter.

    The array is multiplied with the fourier transform of a Gaussian
    kernel.

    Parameters
    ----------
    input : array_like
        The input array.
    sigma : float or sequence
        The sigma of the Gaussian kernel. If a float, `sigma` is the same for
        all axes. If a sequence, `sigma` has to contain one value for each
        axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of filtering the input is placed in this array.

    Returns
    -------
    fourier_gaussian : ndarray
        The filtered input.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import numpy.fft
    >>> import matplotlib.pyplot as plt
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_gaussian(input_, sigma=4)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
    r   r   r   asarrayr   r   ndimr   _normalize_sequencer   flags
contiguouscopyr   fourier_filter)r   sigmanaxisr   Zsigmasr   r   r   r   H   s    .

r   c                 C   sf   t | } t|| }t|| j}t|| j}t j|t jd}|jj	sN|
 }t| ||||d |S )a  
    Multidimensional uniform fourier filter.

    The array is multiplied with the Fourier transform of a box of given
    size.

    Parameters
    ----------
    input : array_like
        The input array.
    size : float or sequence
        The size of the box used for filtering.
        If a float, `size` is the same for all axes. If a sequence, `size` has
        to contain one value for each axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of filtering the input is placed in this array.

    Returns
    -------
    fourier_uniform : ndarray
        The filtered input.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import numpy.fft
    >>> import matplotlib.pyplot as plt
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_uniform(input_, size=20)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
    r   r   r   r   sizer&   r'   r   sizesr   r   r   r      s    .

r   c                 C   s   t | } | jdkrtdt|| }|jdkr4|S t|| j}t|| j}t j|t j	d}|j
jsn| }t| ||||d |S )ah  
    Multidimensional ellipsoid Fourier filter.

    The array is multiplied with the fourier transform of an ellipsoid of
    given sizes.

    Parameters
    ----------
    input : array_like
        The input array.
    size : float or sequence
        The size of the box used for filtering.
        If a float, `size` is the same for all axes. If a sequence, `size` has
        to contain one value for each axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of filtering the input is placed in this array.

    Returns
    -------
    fourier_ellipsoid : ndarray
        The filtered input.

    Notes
    -----
    This function is implemented for arrays of rank 1, 2, or 3.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import numpy.fft
    >>> import matplotlib.pyplot as plt
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_ellipsoid(input_, size=20)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
       z'Only 1d, 2d and 3d inputs are supportedr   r      )r   r   r   NotImplementedErrorr   r)   r   r   r    r   r!   r"   r#   r   r$   r(   r   r   r   r      s    2



r   c                 C   sd   t | } t|| }t|| j}t|| j}t j|t jd}|jj	sN|
 }t| |||| |S )a  
    Multidimensional Fourier shift filter.

    The array is multiplied with the Fourier transform of a shift operation.

    Parameters
    ----------
    input : array_like
        The input array.
    shift : float or sequence
        The size of the box used for filtering.
        If a float, `shift` is the same for all axes. If a sequence, `shift`
        has to contain one value for each axis.
    n : int, optional
        If `n` is negative (default), then the input is assumed to be the
        result of a complex fft.
        If `n` is larger than or equal to zero, the input is assumed to be the
        result of a real fft, and `n` gives the length of the array before
        transformation along the real transform direction.
    axis : int, optional
        The axis of the real transform.
    output : ndarray, optional
        If given, the result of shifting the input is placed in this array.

    Returns
    -------
    fourier_shift : ndarray
        The shifted input.

    Examples
    --------
    >>> from scipy import ndimage, datasets
    >>> import matplotlib.pyplot as plt
    >>> import numpy.fft
    >>> fig, (ax1, ax2) = plt.subplots(1, 2)
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ascent = datasets.ascent()
    >>> input_ = numpy.fft.fft2(ascent)
    >>> result = ndimage.fourier_shift(input_, shift=200)
    >>> result = numpy.fft.ifft2(result)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result.real)  # the imaginary part is an artifact
    >>> plt.show()
    r   )r   r   r   r   r   r   r    r   r!   r"   r#   r   r	   )r   shiftr&   r'   r   Zshiftsr   r   r   r	      s    -

r	   )r   r   N)r   r   N)r   r   N)r   r   N)r   Zscipy._lib._utilr    r   r   __all__r   r   r   r   r   r	   r   r   r   r   <module>   s   
:
9
C