a
    CCCf =                     @   s   d Z ddlZddlmZmZmZmZmZmZmZm	Z	 ddl
mZmZ ddlmZmZ ddlmZ g dZdddZdddZdd ZdddZdddZdd ZdS )zSVD decomposition functions.    N)zerosr_diagdotarccosarcsinwhereclip   )LinAlgError_datacopied)get_lapack_funcs_compute_lwork)_asarray_validated)svdsvdvalsdiagsvdorthsubspace_angles
null_spaceTFgesddc                 C   s  t | |d}t|jdkr"td|j\}}|p8t|| }t|tsLtd|dvrhd| d}	t|	|dkr
|r
||kr||fn||f\}
}|r|
|
 t	tj
jkrtd	|
 d
|
 dnDt|| || }t|| || t	tj
jkr
td| d||d f}t||fdd\}}t||jd |jd ||d}||||||d\}}}}|dkrttd|dk rtd|  |r|||fS |S dS )a.  
    Singular Value Decomposition.

    Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and
    a 1-D array ``s`` of singular values (real, non-negative) such that
    ``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with
    main diagonal ``s``.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    full_matrices : bool, optional
        If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``.
        If False, the shapes are ``(M, K)`` and ``(K, N)``, where
        ``K = min(M, N)``.
    compute_uv : bool, optional
        Whether to compute also ``U`` and ``Vh`` in addition to ``s``.
        Default is True.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    lapack_driver : {'gesdd', 'gesvd'}, optional
        Whether to use the more efficient divide-and-conquer approach
        (``'gesdd'``) or general rectangular approach (``'gesvd'``)
        to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
        Default is ``'gesdd'``.

        .. versionadded:: 0.18

    Returns
    -------
    U : ndarray
        Unitary matrix having left singular vectors as columns.
        Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`.
    s : ndarray
        The singular values, sorted in non-increasing order.
        Of shape (K,), with ``K = min(M, N)``.
    Vh : ndarray
        Unitary matrix having right singular vectors as rows.
        Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`.

    For ``compute_uv=False``, only ``s`` is returned.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svdvals : Compute singular values of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> m, n = 9, 6
    >>> a = rng.standard_normal((m, n)) + 1.j*rng.standard_normal((m, n))
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape,  s.shape, Vh.shape
    ((9, 9), (6,), (6, 6))

    Reconstruct the original matrix from the decomposition:

    >>> sigma = np.zeros((m, n))
    >>> for i in range(min(m, n)):
    ...     sigma[i, i] = s[i]
    >>> a1 = np.dot(U, np.dot(sigma, Vh))
    >>> np.allclose(a, a1)
    True

    Alternatively, use ``full_matrices=False`` (notice that the shape of
    ``U`` is then ``(m, n)`` instead of ``(m, m)``):

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, s.shape, Vh.shape
    ((9, 6), (6,), (6, 6))
    >>> S = np.diag(s)
    >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> np.allclose(s, s2)
    True

    check_finite   expected matrixzlapack_driver must be a string)r   Zgesvdz/lapack_driver must be "gesdd" or "gesvd", not ""r   zIndexing a matrix size z x z)  would incur integer overflow in LAPACK.zIndexing a matrix of z7 elements would incur an in integer overflow in LAPACK.Z_lwork	preferred)Zilp64r   r
   )
compute_uvfull_matrices)r   lworkr   overwrite_azSVD did not convergez0illegal value in %dth argument of internal gesddN)r   lenshape
ValueErrorr   
isinstancestr	TypeErrornumpyZiinfoZint32maxr   r   r   )ar   r   r    r   Zlapack_driverZa1mnmessageZmax_mnZmin_mnszfuncsZgesXdZgesXd_lworkr   usvinfo r3   T/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/linalg/_decomp_svd.pyr      sF    _

"


r   c                 C   sH   t | |d} | jr"t| d|ddS t| jdkr:tdn
tdS dS )a
  
    Compute singular values of a matrix.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    s : (min(M, N),) ndarray
        The singular values, sorted in decreasing order.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svd : Compute the full singular value decomposition of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Notes
    -----
    ``svdvals(a)`` only differs from ``svd(a, compute_uv=False)`` by its
    handling of the edge case of empty ``a``, where it returns an
    empty sequence:

    >>> import numpy as np
    >>> a = np.empty((0, 2))
    >>> from scipy.linalg import svdvals
    >>> svdvals(a)
    array([], dtype=float64)

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import svdvals
    >>> m = np.array([[1.0, 0.0],
    ...               [2.0, 3.0],
    ...               [1.0, 1.0],
    ...               [0.0, 2.0],
    ...               [1.0, 0.0]])
    >>> svdvals(m)
    array([ 4.28091555,  1.63516424])

    We can verify the maximum singular value of `m` by computing the maximum
    length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane.
    We approximate "all" the unit vectors with a large sample. Because
    of linearity, we only need the unit vectors with angles in [0, pi].

    >>> t = np.linspace(0, np.pi, 2000)
    >>> u = np.array([np.cos(t), np.sin(t)])
    >>> np.linalg.norm(m.dot(u), axis=0).max()
    4.2809152422538475

    `p` is a projection matrix with rank 1. With exact arithmetic,
    its singular values would be [1, 0, 0, 0].

    >>> v = np.array([0.1, 0.3, 0.9, 0.3])
    >>> p = np.outer(v, v)
    >>> svdvals(p)
    array([  1.00000000e+00,   2.02021698e-17,   1.56692500e-17,
             8.15115104e-34])

    The singular values of an orthogonal matrix are all 1. Here, we
    create a random orthogonal matrix by using the `rvs()` method of
    `scipy.stats.ortho_group`.

    >>> from scipy.stats import ortho_group
    >>> orth = ortho_group.rvs(4)
    >>> svdvals(orth)
    array([ 1.,  1.,  1.,  1.])

    r   r   F)r   r    r   r   r   N)r   sizer   r!   r"   r#   r'   empty)r)   r    r   r3   r3   r4   r      s    T
r   c                 C   sn   t | }|jj}t| }||kr>t|t||| f|dfS ||krbt|t|| |f|df S tddS )a  
    Construct the sigma matrix in SVD from singular values and size M, N.

    Parameters
    ----------
    s : (M,) or (N,) array_like
        Singular values
    M : int
        Size of the matrix whose singular values are `s`.
    N : int
        Size of the matrix whose singular values are `s`.

    Returns
    -------
    S : (M, N) ndarray
        The S-matrix in the singular value decomposition

    See Also
    --------
    svd : Singular value decomposition of a matrix
    svdvals : Compute singular values of a matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import diagsvd
    >>> vals = np.array([1, 2, 3])  # The array representing the computed svd
    >>> diagsvd(vals, 3, 4)
    array([[1, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 0]])
    >>> diagsvd(vals, 4, 3)
    array([[1, 0, 0],
           [0, 2, 0],
           [0, 0, 3],
           [0, 0, 0]])

    dtypezLength of s must be M or N.N)	r   r8   charr!   r'   Zhstackr   r   r#   )r0   MNparttypZMorNr3   r3   r4   r      s    'r   c           
      C   s   t | dd\}}}|jd |jd  }}|du rHt|jjt|| }t|| }tj||kt	d}|ddd|f }	|	S )a  
    Construct an orthonormal basis for the range of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).

    Returns
    -------
    Q : (M, K) ndarray
        Orthonormal basis for the range of A.
        K = effective rank of A, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    null_space : Matrix null space

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import orth
    >>> A = np.array([[2, 0, 0], [0, 5, 0]])  # rank 2 array
    >>> orth(A)
    array([[0., 1.],
           [1., 0.]])
    >>> orth(A.T)
    array([[0., 1.],
           [1., 0.],
           [0., 0.]])

    Fr   r   r
   Nr7   )
r   r"   r'   finfor8   epsr(   amaxsumint
AZrcondr/   r0   Zvhr:   r;   ZtolnumQr3   r3   r4   r   -  s    &r   c           
      C   s   t | dd\}}}|jd |jd  }}|du rHt|jjt|| }t|| }tj||kt	d}||dddf j
 }	|	S )a:  
    Construct an orthonormal basis for the null space of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).

    Returns
    -------
    Z : (N, K) ndarray
        Orthonormal basis for the null space of A.
        K = dimension of effective null space, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    orth : Matrix range

    Examples
    --------
    1-D null space:

    >>> import numpy as np
    >>> from scipy.linalg import null_space
    >>> A = np.array([[1, 1], [1, 1]])
    >>> ns = null_space(A)
    >>> ns * np.copysign(1, ns[0,0])  # Remove the sign ambiguity of the vector
    array([[ 0.70710678],
           [-0.70710678]])

    2-D null space:

    >>> from numpy.random import default_rng
    >>> rng = default_rng()
    >>> B = rng.random((3, 5))
    >>> Z = null_space(B)
    >>> Z.shape
    (5, 2)
    >>> np.allclose(B.dot(Z), 0)
    True

    The basis vectors are orthonormal (up to rounding error):

    >>> Z.T.dot(Z)
    array([[  1.00000000e+00,   6.92087741e-17],
           [  6.92087741e-17,   1.00000000e+00]])

    Tr>   r   r
   Nr7   )r   r"   r'   r?   r8   r@   r(   rA   rB   rC   TconjrD   r3   r3   r4   r   ]  s    6r   c           	   	   C   sH  t | dd} t| jdkr*td| j t| }~ t |dd}t|jdkr^td|j t|t|krtd|jd  d|jd  t|}~t|j |}t|}|jd |jd kr|t|| }n|t||j  }~~~|d d	k}|	 rt
tt|dd
dd}nd}t||tt|ddd dd}|S )a  
    Compute the subspace angles between two matrices.

    Parameters
    ----------
    A : (M, N) array_like
        The first input array.
    B : (M, K) array_like
        The second input array.

    Returns
    -------
    angles : ndarray, shape (min(N, K),)
        The subspace angles between the column spaces of `A` and `B` in
        descending order.

    See Also
    --------
    orth
    svd

    Notes
    -----
    This computes the subspace angles according to the formula
    provided in [1]_. For equivalence with MATLAB and Octave behavior,
    use ``angles[0]``.

    .. versionadded:: 1.0

    References
    ----------
    .. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces
           in an A-Based Scalar Product: Algorithms and Perturbation
           Estimates. SIAM J. Sci. Comput. 23:2008-2040.

    Examples
    --------
    An Hadamard matrix, which has orthogonal columns, so we expect that
    the suspace angle to be :math:`\frac{\pi}{2}`:

    >>> import numpy as np
    >>> from scipy.linalg import hadamard, subspace_angles
    >>> rng = np.random.default_rng()
    >>> H = hadamard(4)
    >>> print(H)
    [[ 1  1  1  1]
     [ 1 -1  1 -1]
     [ 1  1 -1 -1]
     [ 1 -1 -1  1]]
    >>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:]))
    array([ 90.,  90.])

    And the subspace angle of a matrix to itself should be zero:

    >>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
    array([ True,  True], dtype=bool)

    The angles between non-orthogonal subspaces are in between these extremes:

    >>> x = rng.standard_normal((4, 3))
    >>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
    array([ 55.832])  # random
    Tr   r   zexpected 2D array, got shape z/A and B must have the same number of rows, got r   z and r
   g      ?)r    g      g      ?g        N)r   r!   r"   r#   r   r   rH   rI   r   anyr   r	   r   r   )	rE   BZQAZQBZQA_H_QBsigmamaskZ	mu_arcsinthetar3   r3   r4   r     s8    C
"r   )TTFTr   )FT)N)N)__doc__r'   r   r   r   r   r   r   r   r	   Z_miscr   r   Zlapackr   r   _decompr   __all__r   r   r   r   r   r   r3   r3   r3   r4   <module>   s   (  
 
^4
0
@