a
    CCCf5                     @   sV   d Z ddlZddlmZ ddlmZ g dZdd ZdddZdddZ	dddZ
dS )zQR decomposition functions.    N   )get_lapack_funcs)_datacopied)qrqr_multiplyrqc                 O   s   | dd}|dv rDd|d< | |i |}|d d jtj|d< | |i |}|d dk rttd|d  |f |dd S )z[Call a LAPACK routine, determining lwork automatically and handling
    error return valueslworkN)Nr	   r   z-illegal value in %dth argument of internal %s)getrealZastypenumpyint_
ValueError)fnameargskwargsr   ret r   S/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/linalg/_decomp_qr.pysafecall   s    r   FfullTc                 C   s  |dvrt d|r t| }n
t| }t|jdkr@t d|j\}}|pVt|| }|rtd|f\}	t|	d||d\}
}}|d8 }n$td	|f\}t|d
|||d\}
}|dvs||k rt	|
}nt	|
d|ddf }|r||f}n|f}|dkr|S |dkr|
|ff| S td|
f\}||k r^t|d|
ddd|f ||dd\}nf|dkrt|d|
||dd\}nD|
j
j}tj||f|d}|
|ddd|f< t|d|||dd\}|f| S )aG  
    Compute QR decomposition of a matrix.

    Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be decomposed
    overwrite_a : bool, optional
        Whether data in `a` is overwritten (may improve performance if
        `overwrite_a` is set to True by reusing the existing input data
        structure rather than creating a new one.)
    lwork : int, optional
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic', 'raw'}, optional
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes). The final option 'raw'
        (added in SciPy 0.11) makes the function return two matrices
        (Q, TAU) in the internal format used by LAPACK.
    pivoting : bool, optional
        Whether or not factorization should include pivoting for rank-revealing
        qr decomposition. If pivoting, compute the decomposition
        ``A[:, P] = Q @ R`` as above, but where P is chosen such that the 
        diagonal of R is non-increasing.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    Q : float or complex ndarray
        Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
        if ``mode='r'``. Replaced by tuple ``(Q, TAU)`` if ``mode='raw'``.
    R : float or complex ndarray
        Of shape (M, N), or (K, N) for ``mode in ['economic', 'raw']``.
        ``K = min(M, N)``.
    P : int ndarray
        Of shape (N,) for ``pivoting=True``. Not returned if
        ``pivoting=False``.

    Raises
    ------
    LinAlgError
        Raised if decomposition fails

    Notes
    -----
    This is an interface to the LAPACK routines dgeqrf, zgeqrf,
    dorgqr, zungqr, dgeqp3, and zgeqp3.

    If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
    of (M,M) and (M,N), with ``K=min(M,N)``.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> a = rng.standard_normal((9, 6))

    >>> q, r = linalg.qr(a)
    >>> np.allclose(a, np.dot(q, r))
    True
    >>> q.shape, r.shape
    ((9, 9), (9, 6))

    >>> r2 = linalg.qr(a, mode='r')
    >>> np.allclose(r, r2)
    True

    >>> q3, r3 = linalg.qr(a, mode='economic')
    >>> q3.shape, r3.shape
    ((9, 6), (6, 6))

    >>> q4, r4, p4 = linalg.qr(a, pivoting=True)
    >>> d = np.abs(np.diag(r4))
    >>> np.all(d[1:] <= d[:-1])
    True
    >>> np.allclose(a[:, p4], np.dot(q4, r4))
    True
    >>> q4.shape, r4.shape, p4.shape
    ((9, 9), (9, 6), (6,))

    >>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
    >>> q5.shape, r5.shape, p5.shape
    ((9, 6), (6, 6), (6,))

    )r   r   reconomicrawz>Mode argument should be one of ['full', 'r','economic', 'raw']   zexpected a 2-D array)geqp3r   )overwrite_ar   )geqrfr   r   r   )r   r   Nr   r   )Zorgqrzgorgqr/gungqrr   dtype)r   r   asarray_chkfiniteasarraylenshaper   r   r   triur"   charempty)ar   r   modepivotingcheck_finitea1MNr   r   Zjpvttaur   RZRjZ
gor_un_gqrQtZqqrr   r   r   r      sV    b











r   rightc              
   C   s  |dvrt d| dt|}|jdk rJd}t|}|dkrN|j}nd}tt| } | j\}}	|dkr|jd t||	|||	   krt d	| j d
|j n&||jd krt d|j d
| j t	| |dd|}
|
d \}}t
d|f\}|jdv rd}nd}|dddt||	f }||	kr|dkr|s|r~tj|jd |f|jdd}|j|ddd|	f< n4tj||jd f|jdd}||d|	ddf< d}|rd}nd}d}nT|jd r|dks|r |j}|dkrd}nd}nd}|}|dkrd}nd}t|d||||||d\}|dkrF|j}|dkrj|dddt||	f }|rx| }|f|
dd  S )a	  
    Calculate the QR decomposition and multiply Q with a matrix.

    Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
    and R upper triangular. Multiply Q with a vector or a matrix c.

    Parameters
    ----------
    a : (M, N), array_like
        Input array
    c : array_like
        Input array to be multiplied by ``q``.
    mode : {'left', 'right'}, optional
        ``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if
        mode is 'right'.
        The shape of c must be appropriate for the matrix multiplications,
        if mode is 'left', ``min(a.shape) == c.shape[0]``,
        if mode is 'right', ``a.shape[0] == c.shape[1]``.
    pivoting : bool, optional
        Whether or not factorization should include pivoting for rank-revealing
        qr decomposition, see the documentation of qr.
    conjugate : bool, optional
        Whether Q should be complex-conjugated. This might be faster
        than explicit conjugation.
    overwrite_a : bool, optional
        Whether data in a is overwritten (may improve performance)
    overwrite_c : bool, optional
        Whether data in c is overwritten (may improve performance).
        If this is used, c must be big enough to keep the result,
        i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'.

    Returns
    -------
    CQ : ndarray
        The product of ``Q`` and ``c``.
    R : (K, N), ndarray
        R array of the resulting QR factorization where ``K = min(M, N)``.
    P : (N,) ndarray
        Integer pivot array. Only returned when ``pivoting=True``.

    Raises
    ------
    LinAlgError
        Raised if QR decomposition fails.

    Notes
    -----
    This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``,
    ``?UNMQR``, and ``?GEQP3``.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import qr_multiply, qr
    >>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
    >>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
    >>> qc
    array([[-1.,  1., -1.],
           [-1., -1.,  1.],
           [-1., -1., -1.],
           [-1.,  1.,  1.]])
    >>> r1
    array([[-6., -3., -5.            ],
           [ 0., -1., -1.11022302e-16],
           [ 0.,  0., -1.            ]])
    >>> piv1
    array([1, 0, 2], dtype=int32)
    >>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
    >>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
    True

    )leftr5   z5Mode argument can only be 'left' or 'right' but not ''r   Tr6   Fr   z5Array shapes are not compatible for Q @ c operation: z vs r   z5Array shapes are not compatible for c @ Q operation: Nr   )Zormqr)sdTCF)r"   orderr0   r2   LZC_CONTIGUOUSzgormqr/gunmqr)overwrite_cr5   )r   r   r#   ndimZ
atleast_2dr:   r$   r&   minr   r   typecodeZzerosr"   flagsr   Zravel)r*   cr+   r,   	conjugater   r?   Zonedimr/   r0   r   r3   r1   Z
gor_un_mqrZtranscclrZcQr   r   r   r      s    L




 




r   c                 C   sd  |dvrt d|r t| }n
t| }t|jdkr@t d|j\}}|pVt|| }td|f\}t|d|||d\}	}
|dkr||k rt	|	|| }nt	|	| d	| d	f }|d
kr|S td|	f\}||k rt|d|	| d	 |
|dd\}nZ|dkr$t|d|	|
|dd\}n8tj
||f|	jd}|	|| d	< t|d||
|dd\}||fS )a  
    Compute RQ decomposition of a matrix.

    Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be decomposed
    overwrite_a : bool, optional
        Whether data in a is overwritten (may improve performance)
    lwork : int, optional
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic'}, optional
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes).
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    R : float or complex ndarray
        Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``.
    Q : float or complex ndarray
        Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned
        if ``mode='r'``.

    Raises
    ------
    LinAlgError
        If decomposition fails.

    Notes
    -----
    This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf,
    sorgrq, dorgrq, cungrq and zungrq.

    If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead
    of (N,N) and (M,N), with ``K=min(M,N)``.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> a = rng.standard_normal((6, 9))
    >>> r, q = linalg.rq(a)
    >>> np.allclose(a, r @ q)
    True
    >>> r.shape, q.shape
    ((6, 9), (9, 9))
    >>> r2 = linalg.rq(a, mode='r')
    >>> np.allclose(r, r2)
    True
    >>> r3, q3 = linalg.rq(a, mode='economic')
    >>> r3.shape, q3.shape
    ((6, 6), (6, 9))

    )r   r   r   z8Mode argument should be one of ['full', 'r', 'economic']r   zexpected matrix)gerqfrH   r    r   Nr   )Zorgrqzgorgrq/gungrqr   r!   )r   r   r#   r$   r%   r&   r   r   r   r'   r)   r"   )r*   r   r   r+   r-   r.   r/   r0   rH   r   r1   r2   Z
gor_un_grqr3   Zrq1r   r   r   r   G  sF    A







r   )FNr   FT)r5   FFFF)FNr   T)__doc__r   Zlapackr   Z_miscr   __all__r   r   r   r   r   r   r   r   <module>   s     
   
 