a
    CCCf,1                     @   s   d Z ddlmZ ddlmZmZ ddlZddlmZ ddl	m
Z
mZ ddlmZ dd	lmZ d
d ejd D Zg dZdddZdddZdddZdS )zLU decomposition functions.    )warn)asarrayasarray_chkfiniteN)product   )_datacopiedLinAlgWarning)get_lapack_funcs)lu_dispatcherc                    s&   i | ]  d   fdddD qS ) c                    s   g | ]}t  |r|qS  )npZcan_cast).0yxr   S/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/linalg/_decomp_lu.py
<listcomp>       z<dictcomp>.<listcomp>fdFD)join)r   r   r   r   
<dictcomp>   s   r   ZAll)lulu_solve	lu_factorFTc                 C   s|   |rt | }nt| }|p"t|| }td|f\}|||d\}}}|dk rZtd|  |dkrttd| tdd ||fS )al
  
    Compute pivoted LU decomposition of a matrix.

    The decomposition is::

        A = P L U

    where P is a permutation matrix, L lower triangular with unit
    diagonal elements, and U upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose
    overwrite_a : bool, optional
        Whether to overwrite data in A (may increase performance)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    lu : (M, N) ndarray
        Matrix containing U in its upper triangle, and L in its lower triangle.
        The unit diagonal elements of L are not stored.
    piv : (K,) ndarray
        Pivot indices representing the permutation matrix P:
        row i of matrix was interchanged with row piv[i].
        Of shape ``(K,)``, with ``K = min(M, N)``.

    See Also
    --------
    lu : gives lu factorization in more user-friendly format
    lu_solve : solve an equation system using the LU factorization of a matrix

    Notes
    -----
    This is a wrapper to the ``*GETRF`` routines from LAPACK. Unlike
    :func:`lu`, it outputs the L and U factors into a single array
    and returns pivot indices instead of a permutation matrix.

    While the underlying ``*GETRF`` routines return 1-based pivot indices, the
    ``piv`` array returned by ``lu_factor`` contains 0-based indices.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import lu_factor
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> lu, piv = lu_factor(A)
    >>> piv
    array([2, 2, 3, 3], dtype=int32)

    Convert LAPACK's ``piv`` array to NumPy index and test the permutation

    >>> def pivot_to_permutation(piv):
    ...     perm = np.arange(len(piv))
    ...     for i in range(len(piv)):
    ...         perm[i], perm[piv[i]] = perm[piv[i]], perm[i]
    ...     return perm
    ...
    >>> p_inv = pivot_to_permutation(piv)
    >>> p_inv
    array([2, 0, 3, 1])
    >>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu)
    >>> np.allclose(A[p_inv] - L @ U, np.zeros((4, 4)))
    True

    The P matrix in P L U is defined by the inverse permutation and
    can be recovered using argsort:

    >>> p = np.argsort(p_inv)
    >>> p
    array([1, 3, 0, 2])
    >>> np.allclose(A - L[p] @ U, np.zeros((4, 4)))
    True

    or alternatively:

    >>> P = np.eye(4)[p]
    >>> np.allclose(A - P @ L @ U, np.zeros((4, 4)))
    True
    )getrf)overwrite_ar   z<illegal value in %dth argument of internal getrf (lu_factor)z4Diagonal number %d is exactly zero. Singular matrix.   )
stacklevel)r   r   r   r	   
ValueErrorr   r   )ar   check_finitea1r   r   pivinfor   r   r   r      s    U
r   c                 C   s   | \}}|rt |}nt|}|p*t||}|jd |jd krZtd|j d|j dtd||f\}||||||d\}	}
|
dkr|	S td|
  dS )	aU  Solve an equation system, a x = b, given the LU factorization of a

    Parameters
    ----------
    (lu, piv)
        Factorization of the coefficient matrix a, as given by lu_factor.
        In particular piv are 0-indexed pivot indices.
    b : array
        Right-hand side
    trans : {0, 1, 2}, optional
        Type of system to solve:

        =====  =========
        trans  system
        =====  =========
        0      a x   = b
        1      a^T x = b
        2      a^H x = b
        =====  =========
    overwrite_b : bool, optional
        Whether to overwrite data in b (may increase performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        Solution to the system

    See Also
    --------
    lu_factor : LU factorize a matrix

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import lu_factor, lu_solve
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> b = np.array([1, 1, 1, 1])
    >>> lu, piv = lu_factor(A)
    >>> x = lu_solve((lu, piv), b)
    >>> np.allclose(A @ x - b, np.zeros((4,)))
    True

    r   zShapes of lu z and b z are incompatible)getrs)transoverwrite_bz4illegal value in %dth argument of internal gesv|posvN)r   r   r   shaper   r	   )Z
lu_and_pivbr&   r'   r!   r   r#   b1r%   r   r$   r   r   r   r   y   s    0
r   c                 C   s  |rt | nt | }|jdk r*td|jjdvrjt|jj }|sXtd|j d|	|d }d}|j
^ }}}	t||	}
|jjdv rd	nd
}t|j
 dkrd|rt jg |||
|jd}t jg ||
|	|jd}||fS |rt jg |dt jdnt jg |dd|d}t jg |||
|jd}t jg ||
|	|jd}|||fS |j
dd dkr|rt ||r|n| fS |rt jg ||tdnt |}|t ||r|n| fS t|| s|s|jdd}|jd r|jd s |jdd}|s~t j|t jd}t j|
|
g|jd}t|||| ||	krl|||fn|||f\}}}nt jg ||t jd}||	kr t jg ||
|
|jd}tdd |j
dd D  D ] }t|| || || | q|}n^t jg ||
|
|jd}tdd |j
dd D  D ] }t|| || || | q8|}|s|s|rt jg ||||d}t jdd |D t |g  }d|g ||R < |}n(t j||g|d}d|t ||f< |}|r||fS |||fS )ae  
    Compute LU decomposition of a matrix with partial pivoting.

    The decomposition satisfies::

        A = P @ L @ U

    where ``P`` is a permutation matrix, ``L`` lower triangular with unit
    diagonal elements, and ``U`` upper triangular. If `permute_l` is set to
    ``True`` then ``L`` is returned already permuted and hence satisfying
    ``A = L @ U``.

    Parameters
    ----------
    a : (M, N) array_like
        Array to decompose
    permute_l : bool, optional
        Perform the multiplication P*L (Default: do not permute)
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    p_indices : bool, optional
        If ``True`` the permutation information is returned as row indices.
        The default is ``False`` for backwards-compatibility reasons.

    Returns
    -------
    **(If `permute_l` is ``False``)**

    p : (..., M, M) ndarray
        Permutation arrays or vectors depending on `p_indices`
    l : (..., M, K) ndarray
        Lower triangular or trapezoidal array with unit diagonal.
        ``K = min(M, N)``
    u : (..., K, N) ndarray
        Upper triangular or trapezoidal array

    **(If `permute_l` is ``True``)**

    pl : (..., M, K) ndarray
        Permuted L matrix.
        ``K = min(M, N)``
    u : (..., K, N) ndarray
        Upper triangular or trapezoidal array

    Notes
    -----
    Permutation matrices are costly since they are nothing but row reorder of
    ``L`` and hence indices are strongly recommended to be used instead if the
    permutation is required. The relation in the 2D case then becomes simply
    ``A = L[P, :] @ U``. In higher dimensions, it is better to use `permute_l`
    to avoid complicated indexing tricks.

    In 2D case, if one has the indices however, for some reason, the
    permutation matrix is still needed then it can be constructed by
    ``np.eye(M)[P, :]``.

    Examples
    --------

    >>> import numpy as np
    >>> from scipy.linalg import lu
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> p, l, u = lu(A)
    >>> np.allclose(A, p @ l @ u)
    True
    >>> p  # Permutation matrix
    array([[0., 1., 0., 0.],  # Row index 1
           [0., 0., 0., 1.],  # Row index 3
           [1., 0., 0., 0.],  # Row index 0
           [0., 0., 1., 0.]]) # Row index 2
    >>> p, _, _ = lu(A, p_indices=True)
    >>> p
    array([1, 3, 0, 2])  # as given by row indices above
    >>> np.allclose(A, l[p, :] @ u)
    True

    We can also use nd-arrays, for example, a demonstration with 4D array:

    >>> rng = np.random.default_rng()
    >>> A = rng.uniform(low=-4, high=4, size=[3, 2, 4, 8])
    >>> p, l, u = lu(A)
    >>> p.shape, l.shape, u.shape
    ((3, 2, 4, 4), (3, 2, 4, 4), (3, 2, 4, 8))
    >>> np.allclose(A, p @ l @ u)
    True
    >>> PL, U = lu(A, permute_l=True)
    >>> np.allclose(A, PL @ U)
    True

    r   z1The input array must be at least two-dimensional.r   z
The dtype z5 cannot be cast to float(32, 64) or complex(64, 128).r   TZfFfd)r(   dtype)r-   N)r   r   C)orderZC_CONTIGUOUSZ	WRITEABLEc                 S   s   g | ]}t |qS r   ranger   r   r   r   r   r   ^  r   zlu.<locals>.<listcomp>c                 S   s   g | ]}t |qS r   r1   r3   r   r   r   r   d  r   c                 S   s   g | ]}t |qS r   )r   aranger3   r   r   r   r   n  r   r   )r   r   r   ndimr   r-   charlapack_cast_dict	TypeErrorZastyper(   minemptyZint32Z	ones_likecopyZzerosintr   flagsr
   r   Zix_r4   )r    Z	permute_lr   r!   Z	p_indicesr"   Z
dtype_charndmnkZ
real_dcharZPLUPLpuindZPaZnd_ixr   r   r   r      sx    `


&
   r   )FT)r   FT)FFTF)__doc__warningsr   numpyr   r   r   	itertoolsr   Z_miscr   r   Zlapackr	   Z_decomp_lu_cythonr
   	typecodesr7   __all__r   r   r   r   r   r   r   <module>   s    
e
A  