a
    CCCf0                     @   s   d dl mZ d dlZd dlmZmZmZmZmZm	Z	m
Z
mZmZmZ d dlmZ ddlmZ ddlmZmZ dgZdddZdddZdddZdddZdS )    )warnN)

atleast_2darange
zeros_likeimagdiagiscomplexobjtriltriuargsort
empty_like)ComplexWarning   )_asarray_validated)get_lapack_funcs_compute_lworkldlTFc                 C   sH  t t| |d}|jd |jd kr,td|jdkrRt|t|tjg tdfS |jd }t	|rht
nt}|t
u r|rd\}}	ttt|rtdtdd	 nd
\}}	t||	f|f\}
}t|||d}|
||||d\}}}|dk rt|  d|  dt||d\}}t||||d\}}t||||d\}}|||fS )aG   Computes the LDLt or Bunch-Kaufman factorization of a symmetric/
    hermitian matrix.

    This function returns a block diagonal matrix D consisting blocks of size
    at most 2x2 and also a possibly permuted unit lower triangular matrix
    ``L`` such that the factorization ``A = L D L^H`` or ``A = L D L^T``
    holds. If `lower` is False then (again possibly permuted) upper
    triangular matrices are returned as outer factors.

    The permutation array can be used to triangularize the outer factors
    simply by a row shuffle, i.e., ``lu[perm, :]`` is an upper/lower
    triangular matrix. This is also equivalent to multiplication with a
    permutation matrix ``P.dot(lu)``, where ``P`` is a column-permuted
    identity matrix ``I[:, perm]``.

    Depending on the value of the boolean `lower`, only upper or lower
    triangular part of the input array is referenced. Hence, a triangular
    matrix on entry would give the same result as if the full matrix is
    supplied.

    Parameters
    ----------
    A : array_like
        Square input array
    lower : bool, optional
        This switches between the lower and upper triangular outer factors of
        the factorization. Lower triangular (``lower=True``) is the default.
    hermitian : bool, optional
        For complex-valued arrays, this defines whether ``A = A.conj().T`` or
        ``A = A.T`` is assumed. For real-valued arrays, this switch has no
        effect.
    overwrite_a : bool, optional
        Allow overwriting data in `A` (may enhance performance). The default
        is False.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    lu : ndarray
        The (possibly) permuted upper/lower triangular outer factor of the
        factorization.
    d : ndarray
        The block diagonal multiplier of the factorization.
    perm : ndarray
        The row-permutation index array that brings lu into triangular form.

    Raises
    ------
    ValueError
        If input array is not square.
    ComplexWarning
        If a complex-valued array with nonzero imaginary parts on the
        diagonal is given and hermitian is set to True.

    See Also
    --------
    cholesky, lu

    Notes
    -----
    This function uses ``?SYTRF`` routines for symmetric matrices and
    ``?HETRF`` routines for Hermitian matrices from LAPACK. See [1]_ for
    the algorithm details.

    Depending on the `lower` keyword value, only lower or upper triangular
    part of the input array is referenced. Moreover, this keyword also defines
    the structure of the outer factors of the factorization.

    .. versionadded:: 1.1.0

    References
    ----------
    .. [1] J.R. Bunch, L. Kaufman, Some stable methods for calculating
       inertia and solving symmetric linear systems, Math. Comput. Vol.31,
       1977. :doi:`10.2307/2005787`

    Examples
    --------
    Given an upper triangular array ``a`` that represents the full symmetric
    array with its entries, obtain ``l``, 'd' and the permutation vector `perm`:

    >>> import numpy as np
    >>> from scipy.linalg import ldl
    >>> a = np.array([[2, -1, 3], [0, 2, 0], [0, 0, 1]])
    >>> lu, d, perm = ldl(a, lower=0) # Use the upper part
    >>> lu
    array([[ 0. ,  0. ,  1. ],
           [ 0. ,  1. , -0.5],
           [ 1. ,  1. ,  1.5]])
    >>> d
    array([[-5. ,  0. ,  0. ],
           [ 0. ,  1.5,  0. ],
           [ 0. ,  0. ,  2. ]])
    >>> perm
    array([2, 1, 0])
    >>> lu[perm, :]
    array([[ 1. ,  1. ,  1.5],
           [ 0. ,  1. , -0.5],
           [ 0. ,  0. ,  1. ]])
    >>> lu.dot(d).dot(lu.T)
    array([[ 2., -1.,  3.],
           [-1.,  2.,  0.],
           [ 3.,  0.,  1.]])

    )check_finiter   r   z%The input array "a" should be square.Zdtype)ZhetrfZhetrf_lworkzscipy.linalg.ldl():
The imaginary parts of the diagonalare ignored. Use "hermitian=False" for factorization ofcomplex symmetric arrays.   )
stacklevel)ZsytrfZsytrf_lwork)lower)lworkr   overwrite_azB exited with the internal error "illegal value in argument number z0". See LAPACK documentation for the error codes.)r   	hermitian)r   r   shape
ValueErrorsizer   nparrayintr   complexfloatanyr   r   r   r   r   r   upper_ldl_sanitize_ipiv_ldl_get_d_and_l_ldl_construct_tri_factor)Ar   r   r   r   anZr_or_csslZsolverZsolver_lworkr   ldupivinfoZswap_arrZ	pivot_arrdluperm r3   T/var/www/html/django/DPS/env/lib/python3.9/site-packages/scipy/linalg/_decomp_ldl.pyr      s6    m



c                 C   s   | j }t|}t|td}d}|r0ddd|dfndd|d ddf\}}}}	}
t||	|
D ]}|rfd}qX| | }|dkr||d kr||d  ||< d||< qX|dk r|| ||  kr| |d kr|| d  ||| < d||| < d}qXtdqX||fS )	a  
    This helper function takes the rather strangely encoded permutation array
    returned by the LAPACK routines ?(HE/SY)TRF and converts it into
    regularized permutation and diagonal pivot size format.

    Since FORTRAN uses 1-indexing and LAPACK uses different start points for
    upper and lower formats there are certain offsets in the indices used
    below.

    Let's assume a result where the matrix is 6x6 and there are two 2x2
    and two 1x1 blocks reported by the routine. To ease the coding efforts,
    we still populate a 6-sized array and fill zeros as the following ::

        pivots = [2, 0, 2, 0, 1, 1]

    This denotes a diagonal matrix of the form ::

        [x x        ]
        [x x        ]
        [    x x    ]
        [    x x    ]
        [        x  ]
        [          x]

    In other words, we write 2 when the 2x2 block is first encountered and
    automatically write 0 to the next entry and skip the next spin of the
    loop. Thus, a separate counter or array appends to keep track of block
    sizes are avoided. If needed, zeros can be filtered out later without
    losing the block structure.

    Parameters
    ----------
    a : ndarray
        The permutation array ipiv returned by LAPACK
    lower : bool, optional
        The switch to select whether upper or lower triangle is chosen in
        the LAPACK call.

    Returns
    -------
    swap_ : ndarray
        The array that defines the row/column swap operations. For example,
        if row two is swapped with row four, the result is [0, 3, 2, 3].
    pivots : ndarray
        The array that defines the block diagonal structure as given above.

    r   Fr   r   r   TznWhile parsing the permutation array in "scipy.linalg.ldl", invalid entries found. The array syntax is invalid.)r   r   r   r    ranger   )r)   r   r*   Zswap_ZpivotsZskip_2x2xyrsreriindZcur_valr3   r3   r4   r%      s*    0.

r%   c                 C   s  t | }tt| }|jd }d}|r*dnd\}}	|r@t| dnt| d}
t|}d|
||f< ||dk D ]}|| }|dkr| || ||	 f ||| ||	 f< |r|r| || ||	 f  |||	 || f< n$| || ||	 f |||	 || f< d|
|| ||	 f< |}qj||
fS )a  
    Helper function to extract the diagonal and triangular matrices for
    LDL.T factorization.

    Parameters
    ----------
    ldu : ndarray
        The compact output returned by the LAPACK routing
    pivs : ndarray
        The sanitized array of {0, 1, 2} denoting the sizes of the pivots. For
        every 2 there is a succeeding 0.
    lower : bool, optional
        If set to False, upper triangular part is considered.
    hermitian : bool, optional
        If set to False a symmetric complex array is assumed.

    Returns
    -------
    d : ndarray
        The block diagonal matrix.
    lu : ndarray
        The upper/lower triangular matrix
    r   )r   r   )r   r   r5   r   r   g        )r   r   r   r	   r
   r   Zconj)r-   pivsr   r   Zis_cr0   r*   Zblk_ir7   r8   r1   Z	diag_indsZblkincr3   r3   r4   r&      s$    

$*$r&   c                 C   s   | j d }t|}|r$|d ddfnd|df\}}}t|||D ]}	||	 }
|
|	kr@|r\|	nd}|rh|n|	d }||	 |r~dndkr||rdnd7 }||rdnd7 }| |	|
g||f | |
|	g||f< ||	|
g ||
|	g< q@| t|fS )a  
    Helper function to construct explicit outer factors of LDL factorization.

    If lower is True the permuted factors are multiplied as L(1)*L(2)*...*L(k).
    Otherwise, the permuted factors are multiplied as L(k)*...*L(2)*L(1). See
    LAPACK documentation for more details.

    Parameters
    ----------
    lu : ndarray
        The triangular array that is extracted from LAPACK routine call with
        ones on the diagonals.
    swap_vec : ndarray
        The array that defines the row swapping indices. If the kth entry is m
        then rows k,m are swapped. Notice that the mth entry is not necessarily
        k to avoid undoing the swapping.
    pivs : ndarray
        The array that defines the block diagonal structure returned by
        _ldl_sanitize_ipiv().
    lower : bool, optional
        The boolean to switch between lower and upper triangular structure.

    Returns
    -------
    lu : ndarray
        The square outer factor which satisfies the L * D * L.T = A
    perm : ndarray
        The permutation vector that brings the lu to the triangular form

    Notes
    -----
    Note that the original argument "lu" is overwritten.

    r   r   r5   r   )r   r   r6   r   )r1   Zswap_vecr=   r   r*   r2   r9   r:   r;   r<   Zs_indZcol_sZcol_er3   r3   r4   r'   +  s    #
"$r'   )TTFT)T)TT)T)warningsr   numpyr   r   r   r   r   r   r   r	   r
   r   r   Zscipy._lib._utilr   _decompr   Zlapackr   r   __all__r   r%   r&   r'   r3   r3   r3   r4   <module>   s   0
 
U
8