"""
Internal module for formatting output data in csv, html, xml,
and latex files. This module also applies to display formatting.
"""
from __future__ import annotations

from contextlib import contextmanager
from csv import (
    QUOTE_NONE,
    QUOTE_NONNUMERIC,
)
import decimal
from functools import partial
from io import StringIO
import math
import re
from shutil import get_terminal_size
from typing import (
    IO,
    TYPE_CHECKING,
    Any,
    Callable,
    Final,
    Hashable,
    Iterable,
    Iterator,
    List,
    Mapping,
    Sequence,
    cast,
)
from unicodedata import east_asian_width

import numpy as np

from pandas._config.config import (
    get_option,
    set_option,
)

from pandas._libs import lib
from pandas._libs.missing import NA
from pandas._libs.tslibs import (
    NaT,
    Timedelta,
    Timestamp,
    get_unit_from_dtype,
    iNaT,
    periods_per_day,
)
from pandas._libs.tslibs.nattype import NaTType
from pandas._typing import (
    ArrayLike,
    Axes,
    ColspaceArgType,
    ColspaceType,
    CompressionOptions,
    FilePath,
    FloatFormatType,
    FormattersType,
    IndexLabel,
    StorageOptions,
    WriteBuffer,
)
from pandas.util._decorators import deprecate_kwarg

from pandas.core.dtypes.common import (
    is_categorical_dtype,
    is_complex_dtype,
    is_datetime64_dtype,
    is_extension_array_dtype,
    is_float,
    is_float_dtype,
    is_integer,
    is_integer_dtype,
    is_list_like,
    is_numeric_dtype,
    is_scalar,
    is_timedelta64_dtype,
)
from pandas.core.dtypes.dtypes import DatetimeTZDtype
from pandas.core.dtypes.missing import (
    isna,
    notna,
)

from pandas.core.arrays import (
    Categorical,
    DatetimeArray,
    TimedeltaArray,
)
from pandas.core.base import PandasObject
import pandas.core.common as com
from pandas.core.construction import extract_array
from pandas.core.indexes.api import (
    Index,
    MultiIndex,
    PeriodIndex,
    ensure_index,
)
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.core.reshape.concat import concat

from pandas.io.common import (
    check_parent_directory,
    stringify_path,
)
from pandas.io.formats.printing import (
    adjoin,
    justify,
    pprint_thing,
)

if TYPE_CHECKING:
    from pandas import (
        DataFrame,
        Series,
    )


common_docstring: Final = """
        Parameters
        ----------
        buf : str, Path or StringIO-like, optional, default None
            Buffer to write to. If None, the output is returned as a string.
        columns : sequence, optional, default None
            The subset of columns to write. Writes all columns by default.
        col_space : %(col_space_type)s, optional
            %(col_space)s.
        header : %(header_type)s, optional
            %(header)s.
        index : bool, optional, default True
            Whether to print index (row) labels.
        na_rep : str, optional, default 'NaN'
            String representation of ``NaN`` to use.
        formatters : list, tuple or dict of one-param. functions, optional
            Formatter functions to apply to columns' elements by position or
            name.
            The result of each function must be a unicode string.
            List/tuple must be of length equal to the number of columns.
        float_format : one-parameter function, optional, default None
            Formatter function to apply to columns' elements if they are
            floats. This function must return a unicode string and will be
            applied only to the non-``NaN`` elements, with ``NaN`` being
            handled by ``na_rep``.

            .. versionchanged:: 1.2.0

        sparsify : bool, optional, default True
            Set to False for a DataFrame with a hierarchical index to print
            every multiindex key at each row.
        index_names : bool, optional, default True
            Prints the names of the indexes.
        justify : str, default None
            How to justify the column labels. If None uses the option from
            the print configuration (controlled by set_option), 'right' out
            of the box. Valid values are

            * left
            * right
            * center
            * justify
            * justify-all
            * start
            * end
            * inherit
            * match-parent
            * initial
            * unset.
        max_rows : int, optional
            Maximum number of rows to display in the console.
        max_cols : int, optional
            Maximum number of columns to display in the console.
        show_dimensions : bool, default False
            Display DataFrame dimensions (number of rows by number of columns).
        decimal : str, default '.'
            Character recognized as decimal separator, e.g. ',' in Europe.
    """

_VALID_JUSTIFY_PARAMETERS = (
    "left",
    "right",
    "center",
    "justify",
    "justify-all",
    "start",
    "end",
    "inherit",
    "match-parent",
    "initial",
    "unset",
)

return_docstring: Final = """
        Returns
        -------
        str or None
            If buf is None, returns the result as a string. Otherwise returns
            None.
    """


class CategoricalFormatter:
    def __init__(
        self,
        categorical: Categorical,
        buf: IO[str] | None = None,
        length: bool = True,
        na_rep: str = "NaN",
        footer: bool = True,
    ) -> None:
        self.categorical = categorical
        self.buf = buf if buf is not None else StringIO("")
        self.na_rep = na_rep
        self.length = length
        self.footer = footer
        self.quoting = QUOTE_NONNUMERIC

    def _get_footer(self) -> str:
        footer = ""

        if self.length:
            if footer:
                footer += ", "
            footer += f"Length: {len(self.categorical)}"

        level_info = self.categorical._repr_categories_info()

        # Levels are added in a newline
        if footer:
            footer += "\n"
        footer += level_info

        return str(footer)

    def _get_formatted_values(self) -> list[str]:
        return format_array(
            self.categorical._internal_get_values(),
            None,
            float_format=None,
            na_rep=self.na_rep,
            quoting=self.quoting,
        )

    def to_string(self) -> str:
        categorical = self.categorical

        if len(categorical) == 0:
            if self.footer:
                return self._get_footer()
            else:
                return ""

        fmt_values = self._get_formatted_values()

        fmt_values = [i.strip() for i in fmt_values]
        values = ", ".join(fmt_values)
        result = ["[" + values + "]"]
        if self.footer:
            footer = self._get_footer()
            if footer:
                result.append(footer)

        return str("\n".join(result))


class SeriesFormatter:
    def __init__(
        self,
        series: Series,
        buf: IO[str] | None = None,
        length: bool | str = True,
        header: bool = True,
        index: bool = True,
        na_rep: str = "NaN",
        name: bool = False,
        float_format: str | None = None,
        dtype: bool = True,
        max_rows: int | None = None,
        min_rows: int | None = None,
    ) -> None:
        self.series = series
        self.buf = buf if buf is not None else StringIO()
        self.name = name
        self.na_rep = na_rep
        self.header = header
        self.length = length
        self.index = index
        self.max_rows = max_rows
        self.min_rows = min_rows

        if float_format is None:
            float_format = get_option("display.float_format")
        self.float_format = float_format
        self.dtype = dtype
        self.adj = get_adjustment()

        self._chk_truncate()

    def _chk_truncate(self) -> None:
        self.tr_row_num: int | None

        min_rows = self.min_rows
        max_rows = self.max_rows
        # truncation determined by max_rows, actual truncated number of rows
        # used below by min_rows
        is_truncated_vertically = max_rows and (len(self.series) > max_rows)
        series = self.series
        if is_truncated_vertically:
            max_rows = cast(int, max_rows)
            if min_rows:
                # if min_rows is set (not None or 0), set max_rows to minimum
                # of both
                max_rows = min(min_rows, max_rows)
            if max_rows == 1:
                row_num = max_rows
                series = series.iloc[:max_rows]
            else:
                row_num = max_rows // 2
                series = concat((series.iloc[:row_num], series.iloc[-row_num:]))
            self.tr_row_num = row_num
        else:
            self.tr_row_num = None
        self.tr_series = series
        self.is_truncated_vertically = is_truncated_vertically

    def _get_footer(self) -> str:
        name = self.series.name
        footer = ""

        if getattr(self.series.index, "freq", None) is not None:
            assert isinstance(
                self.series.index, (DatetimeIndex, PeriodIndex, TimedeltaIndex)
            )
            footer += f"Freq: {self.series.index.freqstr}"

        if self.name is not False and name is not None:
            if footer:
                footer += ", "

            series_name = pprint_thing(name, escape_chars=("\t", "\r", "\n"))
            footer += f"Name: {series_name}"

        if self.length is True or (
            self.length == "truncate" and self.is_truncated_vertically
        ):
            if footer:
                footer += ", "
            footer += f"Length: {len(self.series)}"

        if self.dtype is not False and self.dtype is not None:
            dtype_name = getattr(self.tr_series.dtype, "name", None)
            if dtype_name:
                if footer:
                    footer += ", "
                footer += f"dtype: {pprint_thing(dtype_name)}"

        # level infos are added to the end and in a new line, like it is done
        # for Categoricals
        if is_categorical_dtype(self.tr_series.dtype):
            level_info = self.tr_series._values._repr_categories_info()
            if footer:
                footer += "\n"
            footer += level_info

        return str(footer)

    def _get_formatted_index(self) -> tuple[list[str], bool]:
        index = self.tr_series.index

        if isinstance(index, MultiIndex):
            have_header = any(name for name in index.names)
            fmt_index = index.format(names=True)
        else:
            have_header = index.name is not None
            fmt_index = index.format(name=True)
        return fmt_index, have_header

    def _get_formatted_values(self) -> list[str]:
        return format_array(
            self.tr_series._values,
            None,
            float_format=self.float_format,
            na_rep=self.na_rep,
            leading_space=self.index,
        )

    def to_string(self) -> str:
        series = self.tr_series
        footer = self._get_footer()

        if len(series) == 0:
            return f"{type(self.series).__name__}([], {footer})"

        fmt_index, have_header = self._get_formatted_index()
        fmt_values = self._get_formatted_values()

        if self.is_truncated_vertically:
            n_header_rows = 0
            row_num = self.tr_row_num
            row_num = cast(int, row_num)
            width = self.adj.len(fmt_values[row_num - 1])
            if width > 3:
                dot_str = "..."
            else:
                dot_str = ".."
            # Series uses mode=center because it has single value columns
            # DataFrame uses mode=left
            dot_str = self.adj.justify([dot_str], width, mode="center")[0]
            fmt_values.insert(row_num + n_header_rows, dot_str)
            fmt_index.insert(row_num + 1, "")

        if self.index:
            result = self.adj.adjoin(3, *[fmt_index[1:], fmt_values])
        else:
            result = self.adj.adjoin(3, fmt_values)

        if self.header and have_header:
            result = fmt_index[0] + "\n" + result

        if footer:
            result += "\n" + footer

        return str("".join(result))


class TextAdjustment:
    def __init__(self) -> None:
        self.encoding = get_option("display.encoding")

    def len(self, text: str) -> int:
        return len(text)

    def justify(self, texts: Any, max_len: int, mode: str = "right") -> list[str]:
        return justify(texts, max_len, mode=mode)

    def adjoin(self, space: int, *lists, **kwargs) -> str:
        return adjoin(space, *lists, strlen=self.len, justfunc=self.justify, **kwargs)


class EastAsianTextAdjustment(TextAdjustment):
    def __init__(self) -> None:
        super().__init__()
        if get_option("display.unicode.ambiguous_as_wide"):
            self.ambiguous_width = 2
        else:
            self.ambiguous_width = 1

        # Definition of East Asian Width
        # https://unicode.org/reports/tr11/
        # Ambiguous width can be changed by option
        self._EAW_MAP = {"Na": 1, "N": 1, "W": 2, "F": 2, "H": 1}

    def len(self, text: str) -> int:
        """
        Calculate display width considering unicode East Asian Width
        """
        if not isinstance(text, str):
            return len(text)

        return sum(
            self._EAW_MAP.get(east_asian_width(c), self.ambiguous_width) for c in text
        )

    def justify(
        self, texts: Iterable[str], max_len: int, mode: str = "right"
    ) -> list[str]:
        # re-calculate padding space per str considering East Asian Width
        def _get_pad(t):
            return max_len - self.len(t) + len(t)

        if mode == "left":
            return [x.ljust(_get_pad(x)) for x in texts]
        elif mode == "center":
            return [x.center(_get_pad(x)) for x in texts]
        else:
            return [x.rjust(_get_pad(x)) for x in texts]


def get_adjustment() -> TextAdjustment:
    use_east_asian_width = get_option("display.unicode.east_asian_width")
    if use_east_asian_width:
        return EastAsianTextAdjustment()
    else:
        return TextAdjustment()


def get_dataframe_repr_params() -> dict[str, Any]:
    """Get the parameters used to repr(dataFrame) calls using DataFrame.to_string.

    Supplying these parameters to DataFrame.to_string is equivalent to calling
    ``repr(DataFrame)``. This is useful if you want to adjust the repr output.

    .. versionadded:: 1.4.0

    Example
    -------
    >>> import pandas as pd
    >>>
    >>> df = pd.DataFrame([[1, 2], [3, 4]])
    >>> repr_params = pd.io.formats.format.get_dataframe_repr_params()
    >>> repr(df) == df.to_string(**repr_params)
    True
    """
    from pandas.io.formats import console

    if get_option("display.expand_frame_repr"):
        line_width, _ = console.get_console_size()
    else:
        line_width = None
    return {
        "max_rows": get_option("display.max_rows"),
        "min_rows": get_option("display.min_rows"),
        "max_cols": get_option("display.max_columns"),
        "max_colwidth": get_option("display.max_colwidth"),
        "show_dimensions": get_option("display.show_dimensions"),
        "line_width": line_width,
    }


def get_series_repr_params() -> dict[str, Any]:
    """Get the parameters used to repr(Series) calls using Series.to_string.

    Supplying these parameters to Series.to_string is equivalent to calling
    ``repr(series)``. This is useful if you want to adjust the series repr output.

    .. versionadded:: 1.4.0

    Example
    -------
    >>> import pandas as pd
    >>>
    >>> ser = pd.Series([1, 2, 3, 4])
    >>> repr_params = pd.io.formats.format.get_series_repr_params()
    >>> repr(ser) == ser.to_string(**repr_params)
    True
    """
    width, height = get_terminal_size()
    max_rows = (
        height
        if get_option("display.max_rows") == 0
        else get_option("display.max_rows")
    )
    min_rows = (
        height
        if get_option("display.max_rows") == 0
        else get_option("display.min_rows")
    )

    return {
        "name": True,
        "dtype": True,
        "min_rows": min_rows,
        "max_rows": max_rows,
        "length": get_option("display.show_dimensions"),
    }


class DataFrameFormatter:
    """Class for processing dataframe formatting options and data."""

    __doc__ = __doc__ if __doc__ else ""
    __doc__ += common_docstring + return_docstring

    def __init__(
        self,
        frame: DataFrame,
        columns: Sequence[Hashable] | None = None,
        col_space: ColspaceArgType | None = None,
        header: bool | Sequence[str] = True,
        index: bool = True,
        na_rep: str = "NaN",
        formatters: FormattersType | None = None,
        justify: str | None = None,
        float_format: FloatFormatType | None = None,
        sparsify: bool | None = None,
        index_names: bool = True,
        max_rows: int | None = None,
        min_rows: int | None = None,
        max_cols: int | None = None,
        show_dimensions: bool | str = False,
        decimal: str = ".",
        bold_rows: bool = False,
        escape: bool = True,
    ) -> None:
        self.frame = frame
        self.columns = self._initialize_columns(columns)
        self.col_space = self._initialize_colspace(col_space)
        self.header = header
        self.index = index
        self.na_rep = na_rep
        self.formatters = self._initialize_formatters(formatters)
        self.justify = self._initialize_justify(justify)
        self.float_format = float_format
        self.sparsify = self._initialize_sparsify(sparsify)
        self.show_index_names = index_names
        self.decimal = decimal
        self.bold_rows = bold_rows
        self.escape = escape
        self.max_rows = max_rows
        self.min_rows = min_rows
        self.max_cols = max_cols
        self.show_dimensions = show_dimensions

        self.max_cols_fitted = self._calc_max_cols_fitted()
        self.max_rows_fitted = self._calc_max_rows_fitted()

        self.tr_frame = self.frame
        self.truncate()
        self.adj = get_adjustment()

    def get_strcols(self) -> list[list[str]]:
        """
        Render a DataFrame to a list of columns (as lists of strings).
        """
        strcols = self._get_strcols_without_index()

        if self.index:
            str_index = self._get_formatted_index(self.tr_frame)
            strcols.insert(0, str_index)

        return strcols

    @property
    def should_show_dimensions(self) -> bool:
        return self.show_dimensions is True or (
            self.show_dimensions == "truncate" and self.is_truncated
        )

    @property
    def is_truncated(self) -> bool:
        return bool(self.is_truncated_horizontally or self.is_truncated_vertically)

    @property
    def is_truncated_horizontally(self) -> bool:
        return bool(self.max_cols_fitted and (len(self.columns) > self.max_cols_fitted))

    @property
    def is_truncated_vertically(self) -> bool:
        return bool(self.max_rows_fitted and (len(self.frame) > self.max_rows_fitted))

    @property
    def dimensions_info(self) -> str:
        return f"\n\n[{len(self.frame)} rows x {len(self.frame.columns)} columns]"

    @property
    def has_index_names(self) -> bool:
        return _has_names(self.frame.index)

    @property
    def has_column_names(self) -> bool:
        return _has_names(self.frame.columns)

    @property
    def show_row_idx_names(self) -> bool:
        return all((self.has_index_names, self.index, self.show_index_names))

    @property
    def show_col_idx_names(self) -> bool:
        return all((self.has_column_names, self.show_index_names, self.header))

    @property
    def max_rows_displayed(self) -> int:
        return min(self.max_rows or len(self.frame), len(self.frame))

    def _initialize_sparsify(self, sparsify: bool | None) -> bool:
        if sparsify is None:
            return get_option("display.multi_sparse")
        return sparsify

    def _initialize_formatters(
        self, formatters: FormattersType | None
    ) -> FormattersType:
        if formatters is None:
            return {}
        elif len(self.frame.columns) == len(formatters) or isinstance(formatters, dict):
            return formatters
        else:
            raise ValueError(
                f"Formatters length({len(formatters)}) should match "
                f"DataFrame number of columns({len(self.frame.columns)})"
            )

    def _initialize_justify(self, justify: str | None) -> str:
        if justify is None:
            return get_option("display.colheader_justify")
        else:
            return justify

    def _initialize_columns(self, columns: Sequence[Hashable] | None) -> Index:
        if columns is not None:
            # GH 47231 - columns doesn't have to be `Sequence[str]`
            # Will fix in later PR
            cols = ensure_index(cast(Axes, columns))
            self.frame = self.frame[cols]
            return cols
        else:
            return self.frame.columns

    def _initialize_colspace(self, col_space: ColspaceArgType | None) -> ColspaceType:
        result: ColspaceType

        if col_space is None:
            result = {}
        elif isinstance(col_space, (int, str)):
            result = {"": col_space}
            result.update({column: col_space for column in self.frame.columns})
        elif isinstance(col_space, Mapping):
            for column in col_space.keys():
                if column not in self.frame.columns and column != "":
                    raise ValueError(
                        f"Col_space is defined for an unknown column: {column}"
                    )
            result = col_space
        else:
            if len(self.frame.columns) != len(col_space):
                raise ValueError(
                    f"Col_space length({len(col_space)}) should match "
                    f"DataFrame number of columns({len(self.frame.columns)})"
                )
            result = dict(zip(self.frame.columns, col_space))
        return result

    def _calc_max_cols_fitted(self) -> int | None:
        """Number of columns fitting the screen."""
        if not self._is_in_terminal():
            return self.max_cols

        width, _ = get_terminal_size()
        if self._is_screen_narrow(width):
            return width
        else:
            return self.max_cols

    def _calc_max_rows_fitted(self) -> int | None:
        """Number of rows with data fitting the screen."""
        max_rows: int | None

        if self._is_in_terminal():
            _, height = get_terminal_size()
            if self.max_rows == 0:
                # rows available to fill with actual data
                return height - self._get_number_of_auxillary_rows()

            if self._is_screen_short(height):
                max_rows = height
            else:
                max_rows = self.max_rows
        else:
            max_rows = self.max_rows

        return self._adjust_max_rows(max_rows)

    def _adjust_max_rows(self, max_rows: int | None) -> int | None:
        """Adjust max_rows using display logic.

        See description here:
        https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options

        GH #37359
        """
        if max_rows:
            if (len(self.frame) > max_rows) and self.min_rows:
                # if truncated, set max_rows showed to min_rows
                max_rows = min(self.min_rows, max_rows)
        return max_rows

    def _is_in_terminal(self) -> bool:
        """Check if the output is to be shown in terminal."""
        return bool(self.max_cols == 0 or self.max_rows == 0)

    def _is_screen_narrow(self, max_width) -> bool:
        return bool(self.max_cols == 0 and len(self.frame.columns) > max_width)

    def _is_screen_short(self, max_height) -> bool:
        return bool(self.max_rows == 0 and len(self.frame) > max_height)

    def _get_number_of_auxillary_rows(self) -> int:
        """Get number of rows occupied by prompt, dots and dimension info."""
        dot_row = 1
        prompt_row = 1
        num_rows = dot_row + prompt_row

        if self.show_dimensions:
            num_rows += len(self.dimensions_info.splitlines())

        if self.header:
            num_rows += 1

        return num_rows

    def truncate(self) -> None:
        """
        Check whether the frame should be truncated. If so, slice the frame up.
        """
        if self.is_truncated_horizontally:
            self._truncate_horizontally()

        if self.is_truncated_vertically:
            self._truncate_vertically()

    def _truncate_horizontally(self) -> None:
        """Remove columns, which are not to be displayed and adjust formatters.

        Attributes affected:
            - tr_frame
            - formatters
            - tr_col_num
        """
        assert self.max_cols_fitted is not None
        col_num = self.max_cols_fitted // 2
        if col_num >= 1:
            left = self.tr_frame.iloc[:, :col_num]
            right = self.tr_frame.iloc[:, -col_num:]
            self.tr_frame = concat((left, right), axis=1)

            # truncate formatter
            if isinstance(self.formatters, (list, tuple)):
                self.formatters = [
                    *self.formatters[:col_num],
                    *self.formatters[-col_num:],
                ]
        else:
            col_num = cast(int, self.max_cols)
            self.tr_frame = self.tr_frame.iloc[:, :col_num]
        self.tr_col_num = col_num

    def _truncate_vertically(self) -> None:
        """Remove rows, which are not to be displayed.

        Attributes affected:
            - tr_frame
            - tr_row_num
        """
        assert self.max_rows_fitted is not None
        row_num = self.max_rows_fitted // 2
        if row_num >= 1:
            head = self.tr_frame.iloc[:row_num, :]
            tail = self.tr_frame.iloc[-row_num:, :]
            self.tr_frame = concat((head, tail))
        else:
            row_num = cast(int, self.max_rows)
            self.tr_frame = self.tr_frame.iloc[:row_num, :]
        self.tr_row_num = row_num

    def _get_strcols_without_index(self) -> list[list[str]]:
        strcols: list[list[str]] = []

        if not is_list_like(self.header) and not self.header:
            for i, c in enumerate(self.tr_frame):
                fmt_values = self.format_col(i)
                fmt_values = _make_fixed_width(
                    strings=fmt_values,
                    justify=self.justify,
                    minimum=int(self.col_space.get(c, 0)),
                    adj=self.adj,
                )
                strcols.append(fmt_values)
            return strcols

        if is_list_like(self.header):
            # cast here since can't be bool if is_list_like
            self.header = cast(List[str], self.header)
            if len(self.header) != len(self.columns):
                raise ValueError(
                    f"Writing {len(self.columns)} cols "
                    f"but got {len(self.header)} aliases"
                )
            str_columns = [[label] for label in self.header]
        else:
            str_columns = self._get_formatted_column_labels(self.tr_frame)

        if self.show_row_idx_names:
            for x in str_columns:
                x.append("")

        for i, c in enumerate(self.tr_frame):
            cheader = str_columns[i]
            header_colwidth = max(
                int(self.col_space.get(c, 0)), *(self.adj.len(x) for x in cheader)
            )
            fmt_values = self.format_col(i)
            fmt_values = _make_fixed_width(
                fmt_values, self.justify, minimum=header_colwidth, adj=self.adj
            )

            max_len = max(max(self.adj.len(x) for x in fmt_values), header_colwidth)
            cheader = self.adj.justify(cheader, max_len, mode=self.justify)
            strcols.append(cheader + fmt_values)

        return strcols

    def format_col(self, i: int) -> list[str]:
        frame = self.tr_frame
        formatter = self._get_formatter(i)
        return format_array(
            frame.iloc[:, i]._values,
            formatter,
            float_format=self.float_format,
            na_rep=self.na_rep,
            space=self.col_space.get(frame.columns[i]),
            decimal=self.decimal,
            leading_space=self.index,
        )

    def _get_formatter(self, i: str | int) -> Callable | None:
        if isinstance(self.formatters, (list, tuple)):
            if is_integer(i):
                i = cast(int, i)
                return self.formatters[i]
            else:
                return None
        else:
            if is_integer(i) and i not in self.columns:
                i = self.columns[i]
            return self.formatters.get(i, None)

    def _get_formatted_column_labels(self, frame: DataFrame) -> list[list[str]]:
        from pandas.core.indexes.multi import sparsify_labels

        columns = frame.columns

        if isinstance(columns, MultiIndex):
            fmt_columns = columns.format(sparsify=False, adjoin=False)
            fmt_columns = list(zip(*fmt_columns))
            dtypes = self.frame.dtypes._values

            # if we have a Float level, they don't use leading space at all
            restrict_formatting = any(level.is_floating for level in columns.levels)
            need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes)))

            def space_format(x, y):
                if (
                    y not in self.formatters
                    and need_leadsp[x]
                    and not restrict_formatting
                ):
                    return " " + y
                return y

            str_columns = list(
                zip(*([space_format(x, y) for y in x] for x in fmt_columns))
            )
            if self.sparsify and len(str_columns):
                str_columns = sparsify_labels(str_columns)

            str_columns = [list(x) for x in zip(*str_columns)]
        else:
            fmt_columns = columns.format()
            dtypes = self.frame.dtypes
            need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes)))
            str_columns = [
                [" " + x if not self._get_formatter(i) and need_leadsp[x] else x]
                for i, x in enumerate(fmt_columns)
            ]
        # self.str_columns = str_columns
        return str_columns

    def _get_formatted_index(self, frame: DataFrame) -> list[str]:
        # Note: this is only used by to_string() and to_latex(), not by
        # to_html(). so safe to cast col_space here.
        col_space = {k: cast(int, v) for k, v in self.col_space.items()}
        index = frame.index
        columns = frame.columns
        fmt = self._get_formatter("__index__")

        if isinstance(index, MultiIndex):
            fmt_index = index.format(
                sparsify=self.sparsify,
                adjoin=False,
                names=self.show_row_idx_names,
                formatter=fmt,
            )
        else:
            fmt_index = [index.format(name=self.show_row_idx_names, formatter=fmt)]

        fmt_index = [
            tuple(
                _make_fixed_width(
                    list(x), justify="left", minimum=col_space.get("", 0), adj=self.adj
                )
            )
            for x in fmt_index
        ]

        adjoined = self.adj.adjoin(1, *fmt_index).split("\n")

        # empty space for columns
        if self.show_col_idx_names:
            col_header = [str(x) for x in self._get_column_name_list()]
        else:
            col_header = [""] * columns.nlevels

        if self.header:
            return col_header + adjoined
        else:
            return adjoined

    def _get_column_name_list(self) -> list[Hashable]:
        names: list[Hashable] = []
        columns = self.frame.columns
        if isinstance(columns, MultiIndex):
            names.extend("" if name is None else name for name in columns.names)
        else:
            names.append("" if columns.name is None else columns.name)
        return names


class DataFrameRenderer:
    """Class for creating dataframe output in multiple formats.

    Called in pandas.core.generic.NDFrame:
        - to_csv
        - to_latex

    Called in pandas.core.frame.DataFrame:
        - to_html
        - to_string

    Parameters
    ----------
    fmt : DataFrameFormatter
        Formatter with the formatting options.
    """

    def __init__(self, fmt: DataFrameFormatter) -> None:
        self.fmt = fmt

    def to_latex(
        self,
        buf: FilePath | WriteBuffer[str] | None = None,
        column_format: str | None = None,
        longtable: bool = False,
        encoding: str | None = None,
        multicolumn: bool = False,
        multicolumn_format: str | None = None,
        multirow: bool = False,
        caption: str | tuple[str, str] | None = None,
        label: str | None = None,
        position: str | None = None,
    ) -> str | None:
        """
        Render a DataFrame to a LaTeX tabular/longtable environment output.
        """
        from pandas.io.formats.latex import LatexFormatter

        latex_formatter = LatexFormatter(
            self.fmt,
            longtable=longtable,
            column_format=column_format,
            multicolumn=multicolumn,
            multicolumn_format=multicolumn_format,
            multirow=multirow,
            caption=caption,
            label=label,
            position=position,
        )
        string = latex_formatter.to_string()
        return save_to_buffer(string, buf=buf, encoding=encoding)

    def to_html(
        self,
        buf: FilePath | WriteBuffer[str] | None = None,
        encoding: str | None = None,
        classes: str | list | tuple | None = None,
        notebook: bool = False,
        border: int | bool | None = None,
        table_id: str | None = None,
        render_links: bool = False,
    ) -> str | None:
        """
        Render a DataFrame to a html table.

        Parameters
        ----------
        buf : str, path object, file-like object, or None, default None
            String, path object (implementing ``os.PathLike[str]``), or file-like
            object implementing a string ``write()`` function. If None, the result is
            returned as a string.
        encoding : str, default “utf-8”
            Set character encoding.
        classes : str or list-like
            classes to include in the `class` attribute of the opening
            ``<table>`` tag, in addition to the default "dataframe".
        notebook : {True, False}, optional, default False
            Whether the generated HTML is for IPython Notebook.
        border : int
            A ``border=border`` attribute is included in the opening
            ``<table>`` tag. Default ``pd.options.display.html.border``.
        table_id : str, optional
            A css id is included in the opening `<table>` tag if specified.
        render_links : bool, default False
            Convert URLs to HTML links.
        """
        from pandas.io.formats.html import (
            HTMLFormatter,
            NotebookFormatter,
        )

        Klass = NotebookFormatter if notebook else HTMLFormatter

        html_formatter = Klass(
            self.fmt,
            classes=classes,
            border=border,
            table_id=table_id,
            render_links=render_links,
        )
        string = html_formatter.to_string()
        return save_to_buffer(string, buf=buf, encoding=encoding)

    def to_string(
        self,
        buf: FilePath | WriteBuffer[str] | None = None,
        encoding: str | None = None,
        line_width: int | None = None,
    ) -> str | None:
        """
        Render a DataFrame to a console-friendly tabular output.

        Parameters
        ----------
        buf : str, path object, file-like object, or None, default None
            String, path object (implementing ``os.PathLike[str]``), or file-like
            object implementing a string ``write()`` function. If None, the result is
            returned as a string.
        encoding: str, default “utf-8”
            Set character encoding.
        line_width : int, optional
            Width to wrap a line in characters.
        """
        from pandas.io.formats.string import StringFormatter

        string_formatter = StringFormatter(self.fmt, line_width=line_width)
        string = string_formatter.to_string()
        return save_to_buffer(string, buf=buf, encoding=encoding)

    @deprecate_kwarg(old_arg_name="line_terminator", new_arg_name="lineterminator")
    def to_csv(
        self,
        path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None,
        encoding: str | None = None,
        sep: str = ",",
        columns: Sequence[Hashable] | None = None,
        index_label: IndexLabel | None = None,
        mode: str = "w",
        compression: CompressionOptions = "infer",
        quoting: int | None = None,
        quotechar: str = '"',
        lineterminator: str | None = None,
        chunksize: int | None = None,
        date_format: str | None = None,
        doublequote: bool = True,
        escapechar: str | None = None,
        errors: str = "strict",
        storage_options: StorageOptions = None,
    ) -> str | None:
        """
        Render dataframe as comma-separated file.
        """
        from pandas.io.formats.csvs import CSVFormatter

        if path_or_buf is None:
            created_buffer = True
            path_or_buf = StringIO()
        else:
            created_buffer = False

        csv_formatter = CSVFormatter(
            path_or_buf=path_or_buf,
            lineterminator=lineterminator,
            sep=sep,
            encoding=encoding,
            errors=errors,
            compression=compression,
            quoting=quoting,
            cols=columns,
            index_label=index_label,
            mode=mode,
            chunksize=chunksize,
            quotechar=quotechar,
            date_format=date_format,
            doublequote=doublequote,
            escapechar=escapechar,
            storage_options=storage_options,
            formatter=self.fmt,
        )
        csv_formatter.save()

        if created_buffer:
            assert isinstance(path_or_buf, StringIO)
            content = path_or_buf.getvalue()
            path_or_buf.close()
            return content

        return None


def save_to_buffer(
    string: str,
    buf: FilePath | WriteBuffer[str] | None = None,
    encoding: str | None = None,
) -> str | None:
    """
    Perform serialization. Write to buf or return as string if buf is None.
    """
    with get_buffer(buf, encoding=encoding) as f:
        f.write(string)
        if buf is None:
            # error: "WriteBuffer[str]" has no attribute "getvalue"
            return f.getvalue()  # type: ignore[attr-defined]
        return None


@contextmanager
def get_buffer(
    buf: FilePath | WriteBuffer[str] | None, encoding: str | None = None
) -> Iterator[WriteBuffer[str]] | Iterator[StringIO]:
    """
    Context manager to open, yield and close buffer for filenames or Path-like
    objects, otherwise yield buf unchanged.
    """
    if buf is not None:
        buf = stringify_path(buf)
    else:
        buf = StringIO()

    if encoding is None:
        encoding = "utf-8"
    elif not isinstance(buf, str):
        raise ValueError("buf is not a file name and encoding is specified.")

    if hasattr(buf, "write"):
        yield buf
    elif isinstance(buf, str):
        check_parent_directory(str(buf))
        with open(buf, "w", encoding=encoding, newline="") as f:
            # GH#30034 open instead of codecs.open prevents a file leak
            #  if we have an invalid encoding argument.
            # newline="" is needed to roundtrip correctly on
            #  windows test_to_latex_filename
            yield f
    else:
        raise TypeError("buf is not a file name and it has no write method")


# ----------------------------------------------------------------------
# Array formatters


def format_array(
    values: Any,
    formatter: Callable | None,
    float_format: FloatFormatType | None = None,
    na_rep: str = "NaN",
    digits: int | None = None,
    space: str | int | None = None,
    justify: str = "right",
    decimal: str = ".",
    leading_space: bool | None = True,
    quoting: int | None = None,
) -> list[str]:
    """
    Format an array for printing.

    Parameters
    ----------
    values
    formatter
    float_format
    na_rep
    digits
    space
    justify
    decimal
    leading_space : bool, optional, default True
        Whether the array should be formatted with a leading space.
        When an array as a column of a Series or DataFrame, we do want
        the leading space to pad between columns.

        When formatting an Index subclass
        (e.g. IntervalIndex._format_native_types), we don't want the
        leading space since it should be left-aligned.

    Returns
    -------
    List[str]
    """
    fmt_klass: type[GenericArrayFormatter]
    if is_datetime64_dtype(values.dtype):
        fmt_klass = Datetime64Formatter
    elif isinstance(values.dtype, DatetimeTZDtype):
        fmt_klass = Datetime64TZFormatter
    elif is_timedelta64_dtype(values.dtype):
        fmt_klass = Timedelta64Formatter
    elif is_extension_array_dtype(values.dtype):
        fmt_klass = ExtensionArrayFormatter
    elif is_float_dtype(values.dtype) or is_complex_dtype(values.dtype):
        fmt_klass = FloatArrayFormatter
    elif is_integer_dtype(values.dtype):
        fmt_klass = IntArrayFormatter
    else:
        fmt_klass = GenericArrayFormatter

    if space is None:
        space = 12

    if float_format is None:
        float_format = get_option("display.float_format")

    if digits is None:
        digits = get_option("display.precision")

    fmt_obj = fmt_klass(
        values,
        digits=digits,
        na_rep=na_rep,
        float_format=float_format,
        formatter=formatter,
        space=space,
        justify=justify,
        decimal=decimal,
        leading_space=leading_space,
        quoting=quoting,
    )

    return fmt_obj.get_result()


class GenericArrayFormatter:
    def __init__(
        self,
        values: Any,
        digits: int = 7,
        formatter: Callable | None = None,
        na_rep: str = "NaN",
        space: str | int = 12,
        float_format: FloatFormatType | None = None,
        justify: str = "right",
        decimal: str = ".",
        quoting: int | None = None,
        fixed_width: bool = True,
        leading_space: bool | None = True,
    ) -> None:
        self.values = values
        self.digits = digits
        self.na_rep = na_rep
        self.space = space
        self.formatter = formatter
        self.float_format = float_format
        self.justify = justify
        self.decimal = decimal
        self.quoting = quoting
        self.fixed_width = fixed_width
        self.leading_space = leading_space

    def get_result(self) -> list[str]:
        fmt_values = self._format_strings()
        return _make_fixed_width(fmt_values, self.justify)

    def _format_strings(self) -> list[str]:
        if self.float_format is None:
            float_format = get_option("display.float_format")
            if float_format is None:
                precision = get_option("display.precision")
                float_format = lambda x: _trim_zeros_single_float(
                    f"{x: .{precision:d}f}"
                )
        else:
            float_format = self.float_format

        if self.formatter is not None:
            formatter = self.formatter
        else:
            quote_strings = self.quoting is not None and self.quoting != QUOTE_NONE
            formatter = partial(
                pprint_thing,
                escape_chars=("\t", "\r", "\n"),
                quote_strings=quote_strings,
            )

        def _format(x):
            if self.na_rep is not None and is_scalar(x) and isna(x):
                try:
                    # try block for np.isnat specifically
                    # determine na_rep if x is None or NaT-like
                    if x is None:
                        return "None"
                    elif x is NA:
                        return str(NA)
                    elif x is NaT or np.isnat(x):
                        return "NaT"
                except (TypeError, ValueError):
                    # np.isnat only handles datetime or timedelta objects
                    pass
                return self.na_rep
            elif isinstance(x, PandasObject):
                return str(x)
            else:
                # object dtype
                return str(formatter(x))

        vals = extract_array(self.values, extract_numpy=True)
        if not isinstance(vals, np.ndarray):
            raise TypeError(
                "ExtensionArray formatting should use ExtensionArrayFormatter"
            )
        inferred = lib.map_infer(vals, is_float)
        is_float_type = (
            inferred
            # vals may have 2 or more dimensions
            & np.all(notna(vals), axis=tuple(range(1, len(vals.shape))))
        )
        leading_space = self.leading_space
        if leading_space is None:
            leading_space = is_float_type.any()

        fmt_values = []
        for i, v in enumerate(vals):
            if not is_float_type[i] and leading_space:
                fmt_values.append(f" {_format(v)}")
            elif is_float_type[i]:
                fmt_values.append(float_format(v))
            else:
                if leading_space is False:
                    # False specifically, so that the default is
                    # to include a space if we get here.
                    tpl = "{v}"
                else:
                    tpl = " {v}"
                fmt_values.append(tpl.format(v=_format(v)))

        return fmt_values


class FloatArrayFormatter(GenericArrayFormatter):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)

        # float_format is expected to be a string
        # formatter should be used to pass a function
        if self.float_format is not None and self.formatter is None:
            # GH21625, GH22270
            self.fixed_width = False
            if callable(self.float_format):
                self.formatter = self.float_format
                self.float_format = None

    def _value_formatter(
        self,
        float_format: FloatFormatType | None = None,
        threshold: float | None = None,
    ) -> Callable:
        """Returns a function to be applied on each value to format it"""
        # the float_format parameter supersedes self.float_format
        if float_format is None:
            float_format = self.float_format

        # we are going to compose different functions, to first convert to
        # a string, then replace the decimal symbol, and finally chop according
        # to the threshold

        # when there is no float_format, we use str instead of '%g'
        # because str(0.0) = '0.0' while '%g' % 0.0 = '0'
        if float_format:

            def base_formatter(v):
                assert float_format is not None  # for mypy
                # error: "str" not callable
                # error: Unexpected keyword argument "value" for "__call__" of
                # "EngFormatter"
                return (
                    float_format(value=v)  # type: ignore[operator,call-arg]
                    if notna(v)
                    else self.na_rep
                )

        else:

            def base_formatter(v):
                return str(v) if notna(v) else self.na_rep

        if self.decimal != ".":

            def decimal_formatter(v):
                return base_formatter(v).replace(".", self.decimal, 1)

        else:
            decimal_formatter = base_formatter

        if threshold is None:
            return decimal_formatter

        def formatter(value):
            if notna(value):
                if abs(value) > threshold:
                    return decimal_formatter(value)
                else:
                    return decimal_formatter(0.0)
            else:
                return self.na_rep

        return formatter

    def get_result_as_array(self) -> np.ndarray:
        """
        Returns the float values converted into strings using
        the parameters given at initialisation, as a numpy array
        """

        def format_with_na_rep(values: ArrayLike, formatter: Callable, na_rep: str):
            mask = isna(values)
            formatted = np.array(
                [
                    formatter(val) if not m else na_rep
                    for val, m in zip(values.ravel(), mask.ravel())
                ]
            ).reshape(values.shape)
            return formatted

        if self.formatter is not None:
            return format_with_na_rep(self.values, self.formatter, self.na_rep)

        if self.fixed_width:
            threshold = get_option("display.chop_threshold")
        else:
            threshold = None

        # if we have a fixed_width, we'll need to try different float_format
        def format_values_with(float_format):
            formatter = self._value_formatter(float_format, threshold)

            # default formatter leaves a space to the left when formatting
            # floats, must be consistent for left-justifying NaNs (GH #25061)
            if self.justify == "left":
                na_rep = " " + self.na_rep
            else:
                na_rep = self.na_rep

            # separate the wheat from the chaff
            values = self.values
            is_complex = is_complex_dtype(values)
            values = format_with_na_rep(values, formatter, na_rep)

            if self.fixed_width:
                if is_complex:
                    result = _trim_zeros_complex(values, self.decimal)
                else:
                    result = _trim_zeros_float(values, self.decimal)
                return np.asarray(result, dtype="object")

            return values

        # There is a special default string when we are fixed-width
        # The default is otherwise to use str instead of a formatting string
        float_format: FloatFormatType | None
        if self.float_format is None:
            if self.fixed_width:
                if self.leading_space is True:
                    fmt_str = "{value: .{digits:d}f}"
                else:
                    fmt_str = "{value:.{digits:d}f}"
                float_format = partial(fmt_str.format, digits=self.digits)
            else:
                float_format = self.float_format
        else:
            float_format = lambda value: self.float_format % value

        formatted_values = format_values_with(float_format)

        if not self.fixed_width:
            return formatted_values

        # we need do convert to engineering format if some values are too small
        # and would appear as 0, or if some values are too big and take too
        # much space

        if len(formatted_values) > 0:
            maxlen = max(len(x) for x in formatted_values)
            too_long = maxlen > self.digits + 6
        else:
            too_long = False

        with np.errstate(invalid="ignore"):
            abs_vals = np.abs(self.values)
            # this is pretty arbitrary for now
            # large values: more that 8 characters including decimal symbol
            # and first digit, hence > 1e6
            has_large_values = (abs_vals > 1e6).any()
            has_small_values = (
                (abs_vals < 10 ** (-self.digits)) & (abs_vals > 0)
            ).any()

        if has_small_values or (too_long and has_large_values):
            if self.leading_space is True:
                fmt_str = "{value: .{digits:d}e}"
            else:
                fmt_str = "{value:.{digits:d}e}"
            float_format = partial(fmt_str.format, digits=self.digits)
            formatted_values = format_values_with(float_format)

        return formatted_values

    def _format_strings(self) -> list[str]:
        return list(self.get_result_as_array())


class IntArrayFormatter(GenericArrayFormatter):
    def _format_strings(self) -> list[str]:
        if self.leading_space is False:
            formatter_str = lambda x: f"{x:d}".format(x=x)
        else:
            formatter_str = lambda x: f"{x: d}".format(x=x)
        formatter = self.formatter or formatter_str
        fmt_values = [formatter(x) for x in self.values]
        return fmt_values


class Datetime64Formatter(GenericArrayFormatter):
    def __init__(
        self,
        values: np.ndarray | Series | DatetimeIndex | DatetimeArray,
        nat_rep: str = "NaT",
        date_format: None = None,
        **kwargs,
    ) -> None:
        super().__init__(values, **kwargs)
        self.nat_rep = nat_rep
        self.date_format = date_format

    def _format_strings(self) -> list[str]:
        """we by definition have DO NOT have a TZ"""
        values = self.values

        if not isinstance(values, DatetimeIndex):
            values = DatetimeIndex(values)

        if self.formatter is not None and callable(self.formatter):
            return [self.formatter(x) for x in values]

        fmt_values = values._data._format_native_types(
            na_rep=self.nat_rep, date_format=self.date_format
        )
        return fmt_values.tolist()


class ExtensionArrayFormatter(GenericArrayFormatter):
    def _format_strings(self) -> list[str]:
        values = extract_array(self.values, extract_numpy=True)

        formatter = self.formatter
        if formatter is None:
            formatter = values._formatter(boxed=True)

        if isinstance(values, Categorical):
            # Categorical is special for now, so that we can preserve tzinfo
            array = values._internal_get_values()
        else:
            array = np.asarray(values)

        fmt_values = format_array(
            array,
            formatter,
            float_format=self.float_format,
            na_rep=self.na_rep,
            digits=self.digits,
            space=self.space,
            justify=self.justify,
            decimal=self.decimal,
            leading_space=self.leading_space,
            quoting=self.quoting,
        )
        return fmt_values


def format_percentiles(
    percentiles: (np.ndarray | Sequence[float]),
) -> list[str]:
    """
    Outputs rounded and formatted percentiles.

    Parameters
    ----------
    percentiles : list-like, containing floats from interval [0,1]

    Returns
    -------
    formatted : list of strings

    Notes
    -----
    Rounding precision is chosen so that: (1) if any two elements of
    ``percentiles`` differ, they remain different after rounding
    (2) no entry is *rounded* to 0% or 100%.
    Any non-integer is always rounded to at least 1 decimal place.

    Examples
    --------
    Keeps all entries different after rounding:

    >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999])
    ['1.999%', '2.001%', '50%', '66.667%', '99.99%']

    No element is rounded to 0% or 100% (unless already equal to it).
    Duplicates are allowed:

    >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999])
    ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%']
    """
    percentiles = np.asarray(percentiles)

    # It checks for np.NaN as well
    with np.errstate(invalid="ignore"):
        if (
            not is_numeric_dtype(percentiles)
            or not np.all(percentiles >= 0)
            or not np.all(percentiles <= 1)
        ):
            raise ValueError("percentiles should all be in the interval [0,1]")

    percentiles = 100 * percentiles

    int_idx = np.isclose(percentiles.astype(int), percentiles)

    if np.all(int_idx):
        out = percentiles.astype(int).astype(str)
        return [i + "%" for i in out]

    unique_pcts = np.unique(percentiles)
    to_begin = unique_pcts[0] if unique_pcts[0] > 0 else None
    to_end = 100 - unique_pcts[-1] if unique_pcts[-1] < 100 else None

    # Least precision that keeps percentiles unique after rounding
    prec = -np.floor(
        np.log10(np.min(np.ediff1d(unique_pcts, to_begin=to_begin, to_end=to_end)))
    ).astype(int)
    prec = max(1, prec)
    out = np.empty_like(percentiles, dtype=object)
    out[int_idx] = percentiles[int_idx].astype(int).astype(str)

    out[~int_idx] = percentiles[~int_idx].round(prec).astype(str)
    return [i + "%" for i in out]


def is_dates_only(values: np.ndarray | DatetimeArray | Index | DatetimeIndex) -> bool:
    # return a boolean if we are only dates (and don't have a timezone)
    if not isinstance(values, Index):
        values = values.ravel()

    if not isinstance(values, (DatetimeArray, DatetimeIndex)):
        values = DatetimeIndex(values)

    if values.tz is not None:
        return False

    values_int = values.asi8
    consider_values = values_int != iNaT
    # error: Argument 1 to "py_get_unit_from_dtype" has incompatible type
    # "Union[dtype[Any], ExtensionDtype]"; expected "dtype[Any]"
    reso = get_unit_from_dtype(values.dtype)  # type: ignore[arg-type]
    ppd = periods_per_day(reso)

    # TODO: can we reuse is_date_array_normalized?  would need a skipna kwd
    even_days = np.logical_and(consider_values, values_int % ppd != 0).sum() == 0
    if even_days:
        return True
    return False


def _format_datetime64(x: NaTType | Timestamp, nat_rep: str = "NaT") -> str:
    if x is NaT:
        return nat_rep

    # Timestamp.__str__ falls back to datetime.datetime.__str__ = isoformat(sep=' ')
    # so it already uses string formatting rather than strftime (faster).
    return str(x)


def _format_datetime64_dateonly(
    x: NaTType | Timestamp,
    nat_rep: str = "NaT",
    date_format: str | None = None,
) -> str:
    if isinstance(x, NaTType):
        return nat_rep

    if date_format:
        return x.strftime(date_format)
    else:
        # Timestamp._date_repr relies on string formatting (faster than strftime)
        return x._date_repr


def get_format_datetime64(
    is_dates_only: bool, nat_rep: str = "NaT", date_format: str | None = None
) -> Callable:
    """Return a formatter callable taking a datetime64 as input and providing
    a string as output"""

    if is_dates_only:
        return lambda x: _format_datetime64_dateonly(
            x, nat_rep=nat_rep, date_format=date_format
        )
    else:
        return lambda x: _format_datetime64(x, nat_rep=nat_rep)


def get_format_datetime64_from_values(
    values: np.ndarray | DatetimeArray | DatetimeIndex, date_format: str | None
) -> str | None:
    """given values and a date_format, return a string format"""
    if isinstance(values, np.ndarray) and values.ndim > 1:
        # We don't actually care about the order of values, and DatetimeIndex
        #  only accepts 1D values
        values = values.ravel()

    ido = is_dates_only(values)
    if ido:
        # Only dates and no timezone: provide a default format
        return date_format or "%Y-%m-%d"
    return date_format


class Datetime64TZFormatter(Datetime64Formatter):
    def _format_strings(self) -> list[str]:
        """we by definition have a TZ"""
        values = self.values.astype(object)
        ido = is_dates_only(values)
        formatter = self.formatter or get_format_datetime64(
            ido, date_format=self.date_format
        )
        fmt_values = [formatter(x) for x in values]

        return fmt_values


class Timedelta64Formatter(GenericArrayFormatter):
    def __init__(
        self,
        values: np.ndarray | TimedeltaIndex,
        nat_rep: str = "NaT",
        box: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(values, **kwargs)
        self.nat_rep = nat_rep
        self.box = box

    def _format_strings(self) -> list[str]:
        formatter = self.formatter or get_format_timedelta64(
            self.values, nat_rep=self.nat_rep, box=self.box
        )
        return [formatter(x) for x in self.values]


def get_format_timedelta64(
    values: np.ndarray | TimedeltaIndex | TimedeltaArray,
    nat_rep: str = "NaT",
    box: bool = False,
) -> Callable:
    """
    Return a formatter function for a range of timedeltas.
    These will all have the same format argument

    If box, then show the return in quotes
    """
    values_int = values.view(np.int64)

    consider_values = values_int != iNaT

    one_day_nanos = 86400 * 10**9
    # error: Unsupported operand types for % ("ExtensionArray" and "int")
    not_midnight = values_int % one_day_nanos != 0  # type: ignore[operator]
    # error: Argument 1 to "__call__" of "ufunc" has incompatible type
    # "Union[Any, ExtensionArray, ndarray]"; expected
    # "Union[Union[int, float, complex, str, bytes, generic],
    # Sequence[Union[int, float, complex, str, bytes, generic]],
    # Sequence[Sequence[Any]], _SupportsArray]"
    both = np.logical_and(consider_values, not_midnight)  # type: ignore[arg-type]
    even_days = both.sum() == 0

    if even_days:
        format = None
    else:
        format = "long"

    def _formatter(x):
        if x is None or (is_scalar(x) and isna(x)):
            return nat_rep

        if not isinstance(x, Timedelta):
            x = Timedelta(x)

        # Timedelta._repr_base uses string formatting (faster than strftime)
        result = x._repr_base(format=format)
        if box:
            result = f"'{result}'"
        return result

    return _formatter


def _make_fixed_width(
    strings: list[str],
    justify: str = "right",
    minimum: int | None = None,
    adj: TextAdjustment | None = None,
) -> list[str]:

    if len(strings) == 0 or justify == "all":
        return strings

    if adj is None:
        adjustment = get_adjustment()
    else:
        adjustment = adj

    max_len = max(adjustment.len(x) for x in strings)

    if minimum is not None:
        max_len = max(minimum, max_len)

    conf_max = get_option("display.max_colwidth")
    if conf_max is not None and max_len > conf_max:
        max_len = conf_max

    def just(x: str) -> str:
        if conf_max is not None:
            if (conf_max > 3) & (adjustment.len(x) > max_len):
                x = x[: max_len - 3] + "..."
        return x

    strings = [just(x) for x in strings]
    result = adjustment.justify(strings, max_len, mode=justify)
    return result


def _trim_zeros_complex(str_complexes: np.ndarray, decimal: str = ".") -> list[str]:
    """
    Separates the real and imaginary parts from the complex number, and
    executes the _trim_zeros_float method on each of those.
    """
    trimmed = [
        "".join(_trim_zeros_float(re.split(r"([j+-])", x), decimal))
        for x in str_complexes
    ]

    # pad strings to the length of the longest trimmed string for alignment
    lengths = [len(s) for s in trimmed]
    max_length = max(lengths)
    padded = [
        s[: -((k - 1) // 2 + 1)]  # real part
        + (max_length - k) // 2 * "0"
        + s[-((k - 1) // 2 + 1) : -((k - 1) // 2)]  # + / -
        + s[-((k - 1) // 2) : -1]  # imaginary part
        + (max_length - k) // 2 * "0"
        + s[-1]
        for s, k in zip(trimmed, lengths)
    ]
    return padded


def _trim_zeros_single_float(str_float: str) -> str:
    """
    Trims trailing zeros after a decimal point,
    leaving just one if necessary.
    """
    str_float = str_float.rstrip("0")
    if str_float.endswith("."):
        str_float += "0"

    return str_float


def _trim_zeros_float(
    str_floats: np.ndarray | list[str], decimal: str = "."
) -> list[str]:
    """
    Trims the maximum number of trailing zeros equally from
    all numbers containing decimals, leaving just one if
    necessary.
    """
    trimmed = str_floats
    number_regex = re.compile(rf"^\s*[\+-]?[0-9]+\{decimal}[0-9]*$")

    def is_number_with_decimal(x):
        return re.match(number_regex, x) is not None

    def should_trim(values: np.ndarray | list[str]) -> bool:
        """
        Determine if an array of strings should be trimmed.

        Returns True if all numbers containing decimals (defined by the
        above regular expression) within the array end in a zero, otherwise
        returns False.
        """
        numbers = [x for x in values if is_number_with_decimal(x)]
        return len(numbers) > 0 and all(x.endswith("0") for x in numbers)

    while should_trim(trimmed):
        trimmed = [x[:-1] if is_number_with_decimal(x) else x for x in trimmed]

    # leave one 0 after the decimal points if need be.
    result = [
        x + "0" if is_number_with_decimal(x) and x.endswith(decimal) else x
        for x in trimmed
    ]
    return result


def _has_names(index: Index) -> bool:
    if isinstance(index, MultiIndex):
        return com.any_not_none(*index.names)
    else:
        return index.name is not None


class EngFormatter:
    """
    Formats float values according to engineering format.

    Based on matplotlib.ticker.EngFormatter
    """

    # The SI engineering prefixes
    ENG_PREFIXES = {
        -24: "y",
        -21: "z",
        -18: "a",
        -15: "f",
        -12: "p",
        -9: "n",
        -6: "u",
        -3: "m",
        0: "",
        3: "k",
        6: "M",
        9: "G",
        12: "T",
        15: "P",
        18: "E",
        21: "Z",
        24: "Y",
    }

    def __init__(
        self, accuracy: int | None = None, use_eng_prefix: bool = False
    ) -> None:
        self.accuracy = accuracy
        self.use_eng_prefix = use_eng_prefix

    def __call__(self, num: float) -> str:
        """
        Formats a number in engineering notation, appending a letter
        representing the power of 1000 of the original number. Some examples:
        >>> format_eng = EngFormatter(accuracy=0, use_eng_prefix=True)
        >>> format_eng(0)
        ' 0'
        >>> format_eng = EngFormatter(accuracy=1, use_eng_prefix=True)
        >>> format_eng(1_000_000)
        ' 1.0M'
        >>> format_eng = EngFormatter(accuracy=2, use_eng_prefix=False)
        >>> format_eng("-1e-6")
        '-1.00E-06'

        @param num: the value to represent
        @type num: either a numeric value or a string that can be converted to
                   a numeric value (as per decimal.Decimal constructor)

        @return: engineering formatted string
        """
        dnum = decimal.Decimal(str(num))

        if decimal.Decimal.is_nan(dnum):
            return "NaN"

        if decimal.Decimal.is_infinite(dnum):
            return "inf"

        sign = 1

        if dnum < 0:  # pragma: no cover
            sign = -1
            dnum = -dnum

        if dnum != 0:
            pow10 = decimal.Decimal(int(math.floor(dnum.log10() / 3) * 3))
        else:
            pow10 = decimal.Decimal(0)

        pow10 = pow10.min(max(self.ENG_PREFIXES.keys()))
        pow10 = pow10.max(min(self.ENG_PREFIXES.keys()))
        int_pow10 = int(pow10)

        if self.use_eng_prefix:
            prefix = self.ENG_PREFIXES[int_pow10]
        else:
            if int_pow10 < 0:
                prefix = f"E-{-int_pow10:02d}"
            else:
                prefix = f"E+{int_pow10:02d}"

        mant = sign * dnum / (10**pow10)

        if self.accuracy is None:  # pragma: no cover
            format_str = "{mant: g}{prefix}"
        else:
            format_str = f"{{mant: .{self.accuracy:d}f}}{{prefix}}"

        formatted = format_str.format(mant=mant, prefix=prefix)

        return formatted


def set_eng_float_format(accuracy: int = 3, use_eng_prefix: bool = False) -> None:
    """
    Alter default behavior on how float is formatted in DataFrame.
    Format float in engineering format. By accuracy, we mean the number of
    decimal digits after the floating point.

    See also EngFormatter.
    """
    set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix))


def get_level_lengths(
    levels: Any, sentinel: bool | object | str = ""
) -> list[dict[int, int]]:
    """
    For each index in each level the function returns lengths of indexes.

    Parameters
    ----------
    levels : list of lists
        List of values on for level.
    sentinel : string, optional
        Value which states that no new index starts on there.

    Returns
    -------
    Returns list of maps. For each level returns map of indexes (key is index
    in row and value is length of index).
    """
    if len(levels) == 0:
        return []

    control = [True] * len(levels[0])

    result = []
    for level in levels:
        last_index = 0

        lengths = {}
        for i, key in enumerate(level):
            if control[i] and key == sentinel:
                pass
            else:
                control[i] = False
                lengths[last_index] = i - last_index
                last_index = i

        lengths[last_index] = len(level) - last_index

        result.append(lengths)

    return result


def buffer_put_lines(buf: WriteBuffer[str], lines: list[str]) -> None:
    """
    Appends lines to a buffer.

    Parameters
    ----------
    buf
        The buffer to write to
    lines
        The lines to append.
    """
    if any(isinstance(x, str) for x in lines):
        lines = [str(x) for x in lines]
    buf.write("\n".join(lines))
