a
    Sic                    @  s  U d Z ddlmZ ddlmZ ddlZddlmZmZ ddl	Z	ddl
Z
ddlZddlmZ ddlmZmZmZmZmZmZmZmZmZmZ ddlZddlZddlmZmZ dd	lm Z m!Z" dd
l#m$Z$ ddl%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+ ddl,m-Z- ddl.m/Z/ ddl0m1Z1m2Z2m3Z3m4Z4m5Z5 ddl6m7Z7 ddl8m9Z9 ddl:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZE ddlFmGZG ddlHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQ ddlRmSZS ddlTmUZUmVZVmWZW ddlXmY  mZZ[ ddl\m]Z]m^Z^ ddl_m`Z` ddlambZb ddlcmdZdmeZe ddlfmgZg ddlhmiZimjZj erJddlkmlZlmmZmmnZn ddlcmoZo dZpdZqd d! Zrd"d# Zsd$d% Zte]Zud&d'd(d)Zvd*Zwd+exd,< d-Zyd+exd.< d/Zzd+exd0< d1d1d2d2d3Z{eIdgiZ|d4Z}d+exd5< d6Z~d+exd7< ed8@ ejd9d:e}ejd; ejd<de~eg d=d; W d   n1 s"0    Y  dad:ad>d? ZddCdDdEdDdFdGdHdGdHdIdJdKdDdDdLdMdNdOZddCdDdDdQdFdFdRdHdFdS	dTdUZdVdVdHdWdXdYZG dZd[ d[ZG d\d] d]ZG d^d_ d_ZG d`da daeZG dbdc dceZG ddde deeZG dfdg dgeZG dhdi diZG djdk dkeZG dldm dmeZG dndo doeZG dpdq dqeZG drds dseZG dtdu dueZG dvdw dweZG dxdy dyeZG dzd{ d{eZG d|d} d}eZG d~d deZG dd deZddd&dddddZdddddZeddddHddddZedddLdHddddZddddHddddZdDddDdDd_dddZdDdDdDddddZdDdddddZddDdDddddZddDdDddddZddDdDdDdddZdDdDdDdddZdDdHdddZdDddDdddZdDdDdddZddddZG dd dZdS )zY
High level interface to PyTables for reading and writing pandas data structures
to disk
    )annotations)suppressN)datetzinfo)dedent)
TYPE_CHECKINGAnyCallableFinalHashableIteratorLiteralSequencecastoverload)config
get_option)libwriters)	timezones)AnyArrayLike	ArrayLikeDtypeArgFilePathShapenpt)import_optional_dependency)patch_pickle)AttributeConflictWarningClosedFileErrorIncompatibilityWarningPerformanceWarningPossibleDataLossError)cache_readonly)find_stack_level)ensure_objectis_bool_dtypeis_categorical_dtypeis_complex_dtypeis_datetime64_dtypeis_datetime64tz_dtypeis_extension_array_dtypeis_list_likeis_string_dtypeis_timedelta64_dtypeneeds_i8_conversion)array_equivalent)		DataFrameDatetimeIndexIndex
MultiIndexPeriodIndexSeriesTimedeltaIndexconcatisna)
Int64Index)CategoricalDatetimeArrayPeriodArray)PyTablesExprmaybe_expression)extract_array)ensure_index)ArrayManagerBlockManager)stringify_path)adjoinpprint_thing)ColFileNode)Blockz0.15.2UTF-8c                 C  s   t | tjr| d} | S )z(if we have bytes, decode them to unicoderK   )
isinstancenpbytes_decode)s rQ   N/var/www/html/django/DPS/env/lib/python3.9/site-packages/pandas/io/pytables.py_ensure_decoded   s    
rS   c                 C  s   | d u rt } | S N)_default_encodingencodingrQ   rQ   rR   _ensure_encoding   s    rX   c                 C  s   t | trt| } | S )z
    Ensure that an index / column name is a str (python 3); otherwise they
    may be np.string dtype. Non-string dtypes are passed through unchanged.

    https://github.com/pandas-dev/pandas/issues/13492
    )rL   strnamerQ   rQ   rR   _ensure_str   s    
r\   intscope_levelc                   sV   |d  t | ttfr* fdd| D } nt| r>t|  d} | du sNt| rR| S dS )z
    Ensure that the where is a Term or a list of Term.

    This makes sure that we are capturing the scope of variables that are
    passed create the terms here with a frame_level=2 (we are 2 levels down)
       c                   s0   g | ](}|d urt |r(t| d dn|qS )Nr`   r^   )r?   Term).0termlevelrQ   rR   
<listcomp>   s   z _ensure_term.<locals>.<listcomp>r^   N)rL   listtupler?   ra   len)wherer_   rQ   rd   rR   _ensure_term   s    	
rk   z
where criteria is being ignored as this version [%s] is too old (or
not-defined), read the file in and write it out to a new file to upgrade (with
the copy_to method)
r
   incompatibility_doczu
the [%s] attribute of the existing index is [%s] which conflicts with the new
[%s], resetting the attribute to None
attribute_conflict_docz
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->%s,key->%s] [items->%s]
performance_docfixedtable)fro   trp   z;
: boolean
    drop ALL nan rows when appending to a table

dropna_docz~
: format
    default format writing format, if None, then
    put will default to 'fixed' and append will default to 'table'

format_doczio.hdfZdropna_tableF)	validatordefault_format)ro   rp   Nc                  C  sL   t d u rHdd l} | a tt | jjdkaW d    n1 s>0    Y  t S )Nr   strict)
_table_modtablesr   AttributeErrorfileZ_FILE_OPEN_POLICY!_table_file_open_policy_is_strict)ry   rQ   rQ   rR   _tables   s    

 r}   aTrw   zFilePath | HDFStorerY   DataFrame | Series
int | None
str | Noneboolint | dict[str, int] | Nonebool | None Literal[True] | list[str] | NoneNone)path_or_bufkeyvaluemode	complevelcomplibappendformatindexmin_itemsizedropnadata_columnserrorsrW   returnc              
     s   |r$ 	f
dd}n 	f
dd}t | } t| trt| |||d}|| W d   q1 s0    Y  n||  dS )z+store this object, close it if we opened itc                   s   | j 	 d
S )N)r   r   r   nan_repr   r   r   rW   )r   store
r   r   rW   r   r   r   r   r   r   r   rQ   rR   <lambda>  s   zto_hdf.<locals>.<lambda>c                   s   | j 	 d
S )N)r   r   r   r   r   r   rW   r   putr   r   rQ   rR   r     s   )r   r   r   N)rD   rL   rY   HDFStore)r   r   r   r   r   r   r   r   r   r   r   r   r   r   rW   rq   r   rQ   r   rR   to_hdf   s     
(r   rzstr | list | Nonezlist[str] | None)	r   r   r   rj   startstopcolumnsiterator	chunksizec
                 K  s  |dvrt d| d|dur,t|dd}t| trN| jsDtd| }d}ntt| } t| tshtd	zt	j
| }W n tt fy   d}Y n0 |std
|  dt| f||d|
}d}zt|du r| }t|dkrt d|d }|dd D ]}t||st dq|j}|j|||||||	|dW S  t ttfy   t| tstt |  W d   n1 s0    Y   Y n0 dS )a)	  
    Read from the store, close it if we opened it.

    Retrieve pandas object stored in file, optionally based on where
    criteria.

    .. warning::

       Pandas uses PyTables for reading and writing HDF5 files, which allows
       serializing object-dtype data with pickle when using the "fixed" format.
       Loading pickled data received from untrusted sources can be unsafe.

       See: https://docs.python.org/3/library/pickle.html for more.

    Parameters
    ----------
    path_or_buf : str, path object, pandas.HDFStore
        Any valid string path is acceptable. Only supports the local file system,
        remote URLs and file-like objects are not supported.

        If you want to pass in a path object, pandas accepts any
        ``os.PathLike``.

        Alternatively, pandas accepts an open :class:`pandas.HDFStore` object.

    key : object, optional
        The group identifier in the store. Can be omitted if the HDF file
        contains a single pandas object.
    mode : {'r', 'r+', 'a'}, default 'r'
        Mode to use when opening the file. Ignored if path_or_buf is a
        :class:`pandas.HDFStore`. Default is 'r'.
    errors : str, default 'strict'
        Specifies how encoding and decoding errors are to be handled.
        See the errors argument for :func:`open` for a full list
        of options.
    where : list, optional
        A list of Term (or convertible) objects.
    start : int, optional
        Row number to start selection.
    stop  : int, optional
        Row number to stop selection.
    columns : list, optional
        A list of columns names to return.
    iterator : bool, optional
        Return an iterator object.
    chunksize : int, optional
        Number of rows to include in an iteration when using an iterator.
    **kwargs
        Additional keyword arguments passed to HDFStore.

    Returns
    -------
    item : object
        The selected object. Return type depends on the object stored.

    See Also
    --------
    DataFrame.to_hdf : Write a HDF file from a DataFrame.
    HDFStore : Low-level access to HDF files.

    Examples
    --------
    >>> df = pd.DataFrame([[1, 1.0, 'a']], columns=['x', 'y', 'z'])  # doctest: +SKIP
    >>> df.to_hdf('./store.h5', 'data')  # doctest: +SKIP
    >>> reread = pd.read_hdf('./store.h5')  # doctest: +SKIP
    )r   r+r~   zmode zG is not allowed while performing a read. Allowed modes are r, r+ and a.Nr`   r^   z&The HDFStore must be open for reading.Fz5Support for generic buffers has not been implemented.zFile z does not exist)r   r   Tr   z]Dataset(s) incompatible with Pandas data types, not table, or no datasets found in HDF5 file.z?key must be provided when HDF5 file contains multiple datasets.)rj   r   r   r   r   r   
auto_close)
ValueErrorrk   rL   r   is_openOSErrorrD   rY   NotImplementedErrorospathexists	TypeErrorFileNotFoundErrorgroupsri   _is_metadata_of_v_pathnameselectKeyErrorr   rz   close)r   r   r   r   rj   r   r   r   r   r   kwargsr   r   r   r   Zcandidate_only_groupZgroup_to_checkrQ   rQ   rR   read_hdf2  sj    O







(r   rI   )groupparent_groupr   c                 C  sF   | j |j krdS | }|j dkrB|j}||kr:|jdkr:dS |j}qdS )zDCheck if a given group is a metadata group for a given parent_group.Fr`   metaT)Z_v_depthZ	_v_parent_v_name)r   r   currentparentrQ   rQ   rR   r     s    
r   c                   @  s"  e Zd ZU dZded< ded< ded< ded	< ddddddddZddddZedd ZeddddZ	ddddZ
dddddZddddd Zdd!d"d#Zdddd$d%Zddd&d'Zddd(d)Zd dd*d+Zddd,d-Zddd/d0d1d2Zd3dd4d5Zd6dd7d8Zd9d: Zdddd;d<d=Zddd>d?Zeddd@dAZddddBdCdDZdddEdFZddddGdHdIZdddddJdKdLZddddddMdNdOZdddPdQdRZdddUddVdWdddddX	dYdZZ ddddd[d\Z!dddUddVd]dWddd^d_d`Z"ddaddbdcddZ#ddddeddfdgdhZ$diddjdkZ%dddmdndodpZ&ddqddrdsZ'ddtddudvZ(ddddd dxdydzZ)ddd{d|Z*d}d~ Z+dddddZ,dddddtdddZ-dddUddVddddddZ.ddddZ/ddddddZ0dddddZ1dS )r   aa	  
    Dict-like IO interface for storing pandas objects in PyTables.

    Either Fixed or Table format.

    .. warning::

       Pandas uses PyTables for reading and writing HDF5 files, which allows
       serializing object-dtype data with pickle when using the "fixed" format.
       Loading pickled data received from untrusted sources can be unsafe.

       See: https://docs.python.org/3/library/pickle.html for more.

    Parameters
    ----------
    path : str
        File path to HDF5 file.
    mode : {'a', 'w', 'r', 'r+'}, default 'a'

        ``'r'``
            Read-only; no data can be modified.
        ``'w'``
            Write; a new file is created (an existing file with the same
            name would be deleted).
        ``'a'``
            Append; an existing file is opened for reading and writing,
            and if the file does not exist it is created.
        ``'r+'``
            It is similar to ``'a'``, but the file must already exist.
    complevel : int, 0-9, default None
        Specifies a compression level for data.
        A value of 0 or None disables compression.
    complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib'
        Specifies the compression library to be used.
        As of v0.20.2 these additional compressors for Blosc are supported
        (default if no compressor specified: 'blosc:blosclz'):
        {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy',
         'blosc:zlib', 'blosc:zstd'}.
        Specifying a compression library which is not available issues
        a ValueError.
    fletcher32 : bool, default False
        If applying compression use the fletcher32 checksum.
    **kwargs
        These parameters will be passed to the PyTables open_file method.

    Examples
    --------
    >>> bar = pd.DataFrame(np.random.randn(10, 4))
    >>> store = pd.HDFStore('test.h5')
    >>> store['foo'] = bar   # write to HDF5
    >>> bar = store['foo']   # retrieve
    >>> store.close()

    **Create or load HDF5 file in-memory**

    When passing the `driver` option to the PyTables open_file method through
    **kwargs, the HDF5 file is loaded or created in-memory and will only be
    written when closed:

    >>> bar = pd.DataFrame(np.random.randn(10, 4))
    >>> store = pd.HDFStore('test.h5', driver='H5FD_CORE')
    >>> store['foo'] = bar
    >>> store.close()   # only now, data is written to disk
    zFile | None_handlerY   _moder]   
_complevelr   _fletcher32r~   NFr   r   )r   r   
fletcher32r   c                 K  s   d|v rt dtd}|d ur@||jjvr@t d|jj d|d u rX|d urX|jj}t|| _|d u rnd}|| _d | _|r|nd| _	|| _
|| _d | _| jf d|i| d S )	Nr   z-format is not a defined argument for HDFStorery   zcomplib only supports z compression.r~   r   r   )r   r   filtersZall_complibsZdefault_complibrD   _pathr   r   r   _complibr   _filtersopen)selfr   r   r   r   r   r   ry   rQ   rQ   rR   __init__"  s&    

zHDFStore.__init__r   c                 C  s   | j S rT   r   r   rQ   rQ   rR   
__fspath__D  s    zHDFStore.__fspath__c                 C  s   |    | jdusJ | jjS )zreturn the root nodeN)_check_if_openr   rootr   rQ   rQ   rR   r   G  s    zHDFStore.rootc                 C  s   | j S rT   r   r   rQ   rQ   rR   filenameN  s    zHDFStore.filenamer   c                 C  s
   |  |S rT   )getr   r   rQ   rQ   rR   __getitem__R  s    zHDFStore.__getitem__r   r   c                 C  s   |  || d S rT   r   )r   r   r   rQ   rQ   rR   __setitem__U  s    zHDFStore.__setitem__c                 C  s
   |  |S rT   )remover   rQ   rQ   rR   __delitem__X  s    zHDFStore.__delitem__rZ   c              	   C  sD   z|  |W S  ttfy"   Y n0 tdt| j d| ddS )z$allow attribute access to get stores'z' object has no attribute 'N)r   r   r   rz   type__name__)r   r[   rQ   rQ   rR   __getattr__[  s    zHDFStore.__getattr__c                 C  s8   |  |}|dur4|j}||ks0|dd |kr4dS dS )zx
        check for existence of this key
        can match the exact pathname or the pathnm w/o the leading '/'
        Nr`   TF)get_noder   )r   r   noder[   rQ   rQ   rR   __contains__e  s    
zHDFStore.__contains__c                 C  s   t |  S rT   )ri   r   r   rQ   rQ   rR   __len__q  s    zHDFStore.__len__c                 C  s   t | j}t|  d| dS )N
File path: 
)rF   r   r   )r   pstrrQ   rQ   rR   __repr__t  s    
zHDFStore.__repr__c                 C  s   | S rT   rQ   r   rQ   rQ   rR   	__enter__x  s    zHDFStore.__enter__c                 C  s   |    d S rT   )r   )r   exc_type	exc_value	tracebackrQ   rQ   rR   __exit__{  s    zHDFStore.__exit__pandas	list[str])includer   c                 C  s^   |dkrdd |   D S |dkrJ| jdus0J dd | jjddd	D S td
| ddS )a#  
        Return a list of keys corresponding to objects stored in HDFStore.

        Parameters
        ----------

        include : str, default 'pandas'
                When kind equals 'pandas' return pandas objects.
                When kind equals 'native' return native HDF5 Table objects.

                .. versionadded:: 1.1.0

        Returns
        -------
        list
            List of ABSOLUTE path-names (e.g. have the leading '/').

        Raises
        ------
        raises ValueError if kind has an illegal value
        r   c                 S  s   g | ]
}|j qS rQ   r   rb   nrQ   rQ   rR   rf         z!HDFStore.keys.<locals>.<listcomp>nativeNc                 S  s   g | ]
}|j qS rQ   r   r   rQ   rQ   rR   rf     s   /Table)	classnamez8`include` should be either 'pandas' or 'native' but is 'r   )r   r   Z
walk_nodesr   )r   r   rQ   rQ   rR   keys~  s    
zHDFStore.keyszIterator[str]c                 C  s   t |  S rT   )iterr   r   rQ   rQ   rR   __iter__  s    zHDFStore.__iter__zIterator[tuple[str, list]]c                 c  s   |   D ]}|j|fV  qdS )'
        iterate on key->group
        N)r   r   )r   grQ   rQ   rR   items  s    zHDFStore.itemsc                 c  s$   t jdtt d |  E dH  dS )r   zTiteritems is deprecated and will be removed in a future version. Use .items instead.
stacklevelN)warningswarnFutureWarningr$   r   r   rQ   rQ   rR   	iteritems  s    zHDFStore.iteritems)r   r   c                 K  s   t  }| j|krR| jdv r$|dv r$n(|dv rL| jrLtd| j d| j d|| _| jr`|   | jr| jdkrt  j| j| j| j	d| _
tr| jrd	}t||j| j| jfi || _d
S )a9  
        Open the file in the specified mode

        Parameters
        ----------
        mode : {'a', 'w', 'r', 'r+'}, default 'a'
            See HDFStore docstring or tables.open_file for info about modes
        **kwargs
            These parameters will be passed to the PyTables open_file method.
        )r~   w)r   r   )r   zRe-opening the file [z] with mode [z] will delete the current file!r   )r   zGCannot open HDF5 file, which is already opened, even in read-only mode.N)r}   r   r   r"   r   r   r   Filtersr   r   r   r|   r   	open_filer   )r   r   r   ry   msgrQ   rQ   rR   r     s*    

zHDFStore.openc                 C  s   | j dur| j   d| _ dS )z0
        Close the PyTables file handle
        N)r   r   r   rQ   rQ   rR   r     s    

zHDFStore.closec                 C  s   | j du rdS t| j jS )zF
        return a boolean indicating whether the file is open
        NF)r   r   Zisopenr   rQ   rQ   rR   r     s    
zHDFStore.is_open)fsyncr   c                 C  sT   | j durP| j   |rPtt  t| j   W d   n1 sF0    Y  dS )a  
        Force all buffered modifications to be written to disk.

        Parameters
        ----------
        fsync : bool (default False)
          call ``os.fsync()`` on the file handle to force writing to disk.

        Notes
        -----
        Without ``fsync=True``, flushing may not guarantee that the OS writes
        to disk. With fsync, the operation will block until the OS claims the
        file has been written; however, other caching layers may still
        interfere.
        N)r   flushr   r   r   r  fileno)r   r  rQ   rQ   rR   r    s
    


zHDFStore.flushc                 C  sV   t  < | |}|du r*td| d| |W  d   S 1 sH0    Y  dS )z
        Retrieve pandas object stored in file.

        Parameters
        ----------
        key : str

        Returns
        -------
        object
            Same type as object stored in file.
        NNo object named  in the file)r   r   r   _read_groupr   r   r   rQ   rQ   rR   r   
  s
    
zHDFStore.get)r   r   c	                   st   |  |}	|	du r"td| dt|dd}| |	   fdd}
t| |
|j|||||d
}| S )	a  
        Retrieve pandas object stored in file, optionally based on where criteria.

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.

        Parameters
        ----------
        key : str
            Object being retrieved from file.
        where : list or None
            List of Term (or convertible) objects, optional.
        start : int or None
            Row number to start selection.
        stop : int, default None
            Row number to stop selection.
        columns : list or None
            A list of columns that if not None, will limit the return columns.
        iterator : bool or False
            Returns an iterator.
        chunksize : int or None
            Number or rows to include in iteration, return an iterator.
        auto_close : bool or False
            Should automatically close the store when finished.

        Returns
        -------
        object
            Retrieved object from file.
        Nr  r  r`   r^   c                   s   j | || dS )N)r   r   rj   r   read_start_stop_wherer   rP   rQ   rR   funcW  s    zHDFStore.select.<locals>.funcrj   nrowsr   r   r   r   r   )r   r   rk   _create_storer
infer_axesTableIteratorr  
get_result)r   r   rj   r   r   r   r   r   r   r   r  itrQ   r  rR   r     s(    .

zHDFStore.selectr   r   r   c                 C  s8   t |dd}| |}t|ts(td|j|||dS )a  
        return the selection as an Index

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.


        Parameters
        ----------
        key : str
        where : list of Term (or convertible) objects, optional
        start : integer (defaults to None), row number to start selection
        stop  : integer (defaults to None), row number to stop selection
        r`   r^   z&can only read_coordinates with a tablerj   r   r   )rk   
get_storerrL   r   r   read_coordinates)r   r   rj   r   r   tblrQ   rQ   rR   select_as_coordinatesj  s
    

zHDFStore.select_as_coordinates)r   columnr   r   c                 C  s,   |  |}t|tstd|j|||dS )a~  
        return a single column from the table. This is generally only useful to
        select an indexable

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.

        Parameters
        ----------
        key : str
        column : str
            The column of interest.
        start : int or None, default None
        stop : int or None, default None

        Raises
        ------
        raises KeyError if the column is not found (or key is not a valid
            store)
        raises ValueError if the column can not be extracted individually (it
            is part of a data block)

        z!can only read_column with a tabler   r   r   )r  rL   r   r   read_column)r   r   r   r   r   r  rQ   rQ   rR   select_column  s    #

zHDFStore.select_column)r   c
                   sz  t |dd}t|ttfr.t|dkr.|d }t|trRj|||||||	dS t|ttfshtdt|sxtd|du r|d }fdd	|D 	|}
d}t
|
|fgt|D ]\\}}|du rtd
| d|jstd|j d|du r
|j}q|j|krtdqdd	 D }tdd |D d   fdd}t|
||||||||	d
}|jddS )a  
        Retrieve pandas objects from multiple tables.

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.

        Parameters
        ----------
        keys : a list of the tables
        selector : the table to apply the where criteria (defaults to keys[0]
            if not supplied)
        columns : the columns I want back
        start : integer (defaults to None), row number to start selection
        stop  : integer (defaults to None), row number to stop selection
        iterator : bool, return an iterator, default False
        chunksize : nrows to include in iteration, return an iterator
        auto_close : bool, default False
            Should automatically close the store when finished.

        Raises
        ------
        raises KeyError if keys or selector is not found or keys is empty
        raises TypeError if keys is not a list or tuple
        raises ValueError if the tables are not ALL THE SAME DIMENSIONS
        r`   r^   r   )r   rj   r   r   r   r   r   r   zkeys must be a list/tuplez keys must have a non-zero lengthNc                   s   g | ]}  |qS rQ   )r  rb   kr   rQ   rR   rf     r   z/HDFStore.select_as_multiple.<locals>.<listcomp>zInvalid table []zobject [z>] is not a table, and cannot be used in all select as multiplez,all tables must have exactly the same nrows!c                 S  s   g | ]}t |tr|qS rQ   )rL   r   rb   xrQ   rQ   rR   rf     r   c                 S  s   h | ]}|j d  d  qS r   )non_index_axesrb   rr   rQ   rQ   rR   	<setcomp>  r   z.HDFStore.select_as_multiple.<locals>.<setcomp>c                   s*    fddD }t |dd S )Nc                   s   g | ]}|j  d qS )rj   r   r   r   r  r+  )r  r  r  r   rQ   rR   rf     s   z=HDFStore.select_as_multiple.<locals>.func.<locals>.<listcomp>F)axisverify_integrity)r8   _consolidate)r  r  r  objs)r.  r   tblsr  rR   r    s    z)HDFStore.select_as_multiple.<locals>.funcr  Tcoordinates)rk   rL   rg   rh   ri   rY   r   r   r   r  	itertoolschainzipr   is_tablepathnamer  r  r  )r   r   rj   selectorr   r   r   r   r   r   rP   r  rr   r%  Z_tblsr  r  rQ   )r.  r   r   r2  rR   select_as_multiple  sd    +

 


zHDFStore.select_as_multipleTrw   r   r   r   )	r   r   r   r   r   r   track_timesr   r   c                 C  sH   |du rt dpd}| |}| j|||||||||	|
||||d dS )a  
        Store object in HDFStore.

        Parameters
        ----------
        key : str
        value : {Series, DataFrame}
        format : 'fixed(f)|table(t)', default is 'fixed'
            Format to use when storing object in HDFStore. Value can be one of:

            ``'fixed'``
                Fixed format.  Fast writing/reading. Not-appendable, nor searchable.
            ``'table'``
                Table format.  Write as a PyTables Table structure which may perform
                worse but allow more flexible operations like searching / selecting
                subsets of the data.
        index : bool, default True
            Write DataFrame index as a column.
        append : bool, default False
            This will force Table format, append the input data to the existing.
        data_columns : list of columns or True, default None
            List of columns to create as data columns, or True to use all columns.
            See `here
            <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#query-via-data-columns>`__.
        encoding : str, default None
            Provide an encoding for strings.
        track_times : bool, default True
            Parameter is propagated to 'create_table' method of 'PyTables'.
            If set to False it enables to have the same h5 files (same hashes)
            independent on creation time.
        dropna : bool, default False, optional
            Remove missing values.

            .. versionadded:: 1.1.0
        Nio.hdf.default_formatro   )r   r   r   r   r   r   r   r   rW   r   r<  r   )r   _validate_format_write_to_group)r   r   r   r   r   r   r   r   r   r   r   rW   r   r<  r   rQ   rQ   rR   r   ,  s&    4
zHDFStore.putc              
   C  s   t |dd}z| |}W n ty.    Y nt ty@    Y nb ty } zJ|dur`td|| |}|dur|jdd W Y d}~dS W Y d}~n
d}~0 0 t	|||r|j
jdd n|jstd|j|||dS dS )	a:  
        Remove pandas object partially by specifying the where condition

        Parameters
        ----------
        key : str
            Node to remove or delete rows from
        where : list of Term (or convertible) objects, optional
        start : integer (defaults to None), row number to start selection
        stop  : integer (defaults to None), row number to stop selection

        Returns
        -------
        number of rows removed (or None if not a Table)

        Raises
        ------
        raises KeyError if key is not a valid store

        r`   r^   Nz5trying to remove a node with a non-None where clause!T	recursivez7can only remove with where on objects written as tablesr  )rk   r  r   AssertionError	Exceptionr   r   Z	_f_removecomall_noner   r8  delete)r   r   rj   r   r   rP   errr   rQ   rQ   rR   r   t  s2    
$zHDFStore.remover   )r   r   r   r   r   r   r   r   c                 C  sl   |	durt d|du r td}|du r4tdp2d}| |}| j|||||||||
|||||||d dS )a  
        Append to Table in file.

        Node must already exist and be Table format.

        Parameters
        ----------
        key : str
        value : {Series, DataFrame}
        format : 'table' is the default
            Format to use when storing object in HDFStore.  Value can be one of:

            ``'table'``
                Table format. Write as a PyTables Table structure which may perform
                worse but allow more flexible operations like searching / selecting
                subsets of the data.
        index : bool, default True
            Write DataFrame index as a column.
        append       : bool, default True
            Append the input data to the existing.
        data_columns : list of columns, or True, default None
            List of columns to create as indexed data columns for on-disk
            queries, or True to use all columns. By default only the axes
            of the object are indexed. See `here
            <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#query-via-data-columns>`__.
        min_itemsize : dict of columns that specify minimum str sizes
        nan_rep      : str to use as str nan representation
        chunksize    : size to chunk the writing
        expectedrows : expected TOTAL row size of this table
        encoding     : default None, provide an encoding for str
        dropna : bool, default False, optional
            Do not write an ALL nan row to the store settable
            by the option 'io.hdf.dropna_table'.

        Notes
        -----
        Does *not* check if data being appended overlaps with existing
        data in the table, so be careful
        Nz>columns is not a supported keyword in append, try data_columnszio.hdf.dropna_tabler=  rp   )r   axesr   r   r   r   r   r   r   expectedrowsr   r   rW   r   )r   r   r>  r?  )r   r   r   r   rH  r   r   r   r   r   r   r   r   rI  r   r   rW   r   rQ   rQ   rR   r     s6    ;
zHDFStore.appenddict)dr   c                   s  |durt dt|ts"td||vr2tdtttjttt	  d }d}	g }
|
 D ]0\}  du r|	durtd|}	qh|
  qh|	durֈj| }|t|
}t||}||||	< |du r|| }|r*fdd| D }t|}|D ]}||}qj| |d	d}|
 D ]h\} ||krT|nd}j |d
}|dur fdd|
 D nd}| j||f||d| q>dS )a  
        Append to multiple tables

        Parameters
        ----------
        d : a dict of table_name to table_columns, None is acceptable as the
            values of one node (this will get all the remaining columns)
        value : a pandas object
        selector : a string that designates the indexable table; all of its
            columns will be designed as data_columns, unless data_columns is
            passed, in which case these are used
        data_columns : list of columns to create as data columns, or True to
            use all columns
        dropna : if evaluates to True, drop rows from all tables if any single
                 row in each table has all NaN. Default False.

        Notes
        -----
        axes parameter is currently not accepted

        Nztaxes is currently not accepted as a parameter to append_to_multiple; you can create the tables independently insteadzQappend_to_multiple must have a dictionary specified as the way to split the valuez=append_to_multiple requires a selector that is in passed dictr   z<append_to_multiple can only have one value in d that is Nonec                 3  s    | ]} | j d djV  qdS )all)howN)r   r   )rb   cols)r   rQ   rR   	<genexpr>P  r   z.HDFStore.append_to_multiple.<locals>.<genexpr>r   r.  c                   s   i | ]\}}| v r||qS rQ   rQ   rb   r   r   )vrQ   rR   
<dictcomp>`  r   z/HDFStore.append_to_multiple.<locals>.<dictcomp>)r   r   )r   rL   rJ  r   rg   setrangendim	_AXES_MAPr   r   extendrH  
differencer3   sortedget_indexertakevaluesnextintersectionlocpopreindexr   )r   rK  r   r:  r   rH  r   r   r.  Z
remain_keyZremain_valuesr%  orderedZorddidxsZvalid_indexr   r   dcvalfilteredrQ   )rR  r   rR   append_to_multiple  sZ    
&

zHDFStore.append_to_multipler   )r   optlevelkindr   c                 C  sB   t   | |}|du rdS t|ts.td|j|||d dS )a  
        Create a pytables index on the table.

        Parameters
        ----------
        key : str
        columns : None, bool, or listlike[str]
            Indicate which columns to create an index on.

            * False : Do not create any indexes.
            * True : Create indexes on all columns.
            * None : Create indexes on all columns.
            * listlike : Create indexes on the given columns.

        optlevel : int or None, default None
            Optimization level, if None, pytables defaults to 6.
        kind : str or None, default None
            Kind of index, if None, pytables defaults to "medium".

        Raises
        ------
        TypeError: raises if the node is not a table
        Nz1cannot create table index on a Fixed format store)r   ri  rj  )r}   r  rL   r   r   create_index)r   r   r   ri  rj  rP   rQ   rQ   rR   create_table_indexf  s    

zHDFStore.create_table_indexrg   c                 C  s<   t   |   | jdusJ tdus(J dd | j D S )z
        Return a list of all the top-level nodes.

        Each node returned is not a pandas storage object.

        Returns
        -------
        list
            List of objects.
        Nc                 S  sP   g | ]H}t |tjjst|jd dsHt|ddsHt |tjjr|jdkr|qS )pandas_typeNrp   )	rL   rx   linkLinkgetattr_v_attrsrp   r   r   )rb   r   rQ   rQ   rR   rf     s   z#HDFStore.groups.<locals>.<listcomp>)r}   r   r   rx   walk_groupsr   rQ   rQ   rR   r     s    zHDFStore.groupsr   z*Iterator[tuple[str, list[str], list[str]]])rj   r   c                 c  s   t   |   | jdusJ tdus(J | j|D ]}t|jdddurLq4g }g }|j D ]B}t|jdd}|du rt	|tj
jr||j q^||j q^|jd||fV  q4dS )aS  
        Walk the pytables group hierarchy for pandas objects.

        This generator will yield the group path, subgroups and pandas object
        names for each group.

        Any non-pandas PyTables objects that are not a group will be ignored.

        The `where` group itself is listed first (preorder), then each of its
        child groups (following an alphanumerical order) is also traversed,
        following the same procedure.

        Parameters
        ----------
        where : str, default "/"
            Group where to start walking.

        Yields
        ------
        path : str
            Full path to a group (without trailing '/').
        groups : list
            Names (strings) of the groups contained in `path`.
        leaves : list
            Names (strings) of the pandas objects contained in `path`.
        Nrm  r   )r}   r   r   rx   rr  rp  rq  Z_v_childrenr]  rL   r   Groupr   r   r   rstrip)r   rj   r   r   leaveschildrm  rQ   rQ   rR   walk  s     zHDFStore.walkzNode | Nonec                 C  s~   |    |dsd| }| jdus(J tdus4J z| j| j|}W n tjjy`   Y dS 0 t|tj	szJ t
||S )z9return the node with the key or None if it does not existr   N)r   
startswithr   rx   r   r   
exceptionsZNoSuchNodeErrorrL   rI   r   )r   r   r   rQ   rQ   rR   r     s    
zHDFStore.get_nodeGenericFixed | Tablec                 C  s8   |  |}|du r"td| d| |}|  |S )z<return the storer object for a key, raise if not in the fileNr  r  )r   r   r  r  )r   r   r   rP   rQ   rQ   rR   r    s    

zHDFStore.get_storerr   )propindexesr   r   r   c	              	   C  s   t |||||d}	|du r&t|  }t|ttfs:|g}|D ]}
| |
}|dur>|
|	v rj|rj|	|
 | |
}t|trd}|rdd |j	D }|	j
|
||t|dd|jd q>|	j|
||jd q>|	S )	a;  
        Copy the existing store to a new file, updating in place.

        Parameters
        ----------
        propindexes : bool, default True
            Restore indexes in copied file.
        keys : list, optional
            List of keys to include in the copy (defaults to all).
        overwrite : bool, default True
            Whether to overwrite (remove and replace) existing nodes in the new store.
        mode, complib, complevel, fletcher32 same as in HDFStore.__init__

        Returns
        -------
        open file handle of the new store
        )r   r   r   r   NFc                 S  s   g | ]}|j r|jqS rQ   )
is_indexedr[   rb   r~   rQ   rQ   rR   rf   $  r   z!HDFStore.copy.<locals>.<listcomp>r   )r   r   rW   rV   )r   rg   r   rL   rh   r  r   r   r   rH  r   rp  rW   r   )r   r{   r   r{  r   r   r   r   	overwrite	new_storer%  rP   datar   rQ   rQ   rR   copy  s6    





zHDFStore.copyc           
      C  s
  t | j}t|  d| d}| jrt|  }t|rg }g }|D ]}z<| |}|dur|t |j	pj| |t |p|d W qD t
y    Y qD ty } z0|| t |}	|d|	 d W Y d}~qDd}~0 0 qD|td||7 }n|d7 }n|d	7 }|S )
zg
        Print detailed information on the store.

        Returns
        -------
        str
        r   r   Nzinvalid_HDFStore nodez[invalid_HDFStore node: r&     EmptyzFile is CLOSED)rF   r   r   r   rZ  r   ri   r  r   r9  rB  rC  rE   )
r   r   outputZlkeysr   r]  r%  rP   detailZdstrrQ   rQ   rR   info1  s.    


*
zHDFStore.infoc                 C  s   | j st| j dd S )Nz file is not open!)r   r   r   r   rQ   rQ   rR   r   [  s    zHDFStore._check_if_open)r   r   c              
   C  sL   zt |  }W n6 tyF } ztd| d|W Y d}~n
d}~0 0 |S )zvalidate / deprecate formatsz#invalid HDFStore format specified [r&  N)_FORMAT_MAPlowerr   r   )r   r   rG  rQ   rQ   rR   r>  _  s
    (zHDFStore._validate_formatrK   zDataFrame | Series | None)r   rW   r   r   c              
     s"  durt ttfstd fdd}ttjdd}ttjdd}|du rƈdu rt  tdustJ tddst tj	j
rd}d	}qtd
n$t trd}nd} dkr|d7 }d|vr(ttd}	z|	| }
W n0 ty } z|d|W Y d}~n
d}~0 0 |
| ||dS |du rdur|dkrtdd}|dur|jdkrnd}n|jdkrd}nB|dkrtdd}|dur|jdkrd}n|jdkrd}ttttttd}z|| }
W n0 ty } z|d|W Y d}~n
d}~0 0 |
| ||dS )z"return a suitable class to operateNz(value must be None, Series, or DataFramec              	     s$   t d|  d dt d  S )Nz(cannot properly create the storer for: [z
] [group->,value->z	,format->)r   r   )rr   r   r   r   rQ   rR   errorw  s    z&HDFStore._create_storer.<locals>.errorrm  
table_typerp   frame_tablegeneric_tablezKcannot create a storer if the object is not existing nor a value are passedseriesframe_table)r  r  _STORER_MAPrW   r   series_tabler   r`   appendable_seriesappendable_multiseriesappendable_frameappendable_multiframe)r  r  r  r  r  worm
_TABLE_MAP)rL   r6   r1   r   rS   rp  rq  r}   rx   rp   r   SeriesFixed
FrameFixedr   nlevelsGenericTableAppendableSeriesTableAppendableMultiSeriesTableAppendableFrameTableAppendableMultiFrameTable	WORMTable)r   r   r   r   rW   r   r  ptttr  clsrG  r   r  rQ   r  rR   r  i  sr    


 





 zHDFStore._create_storer)r   r   r   r   r   r<  r   c                 C  s   t |dd r|dks|rd S | ||}| j|||||d}|rr|jrZ|jrb|dkrb|jrbtd|jsz|  n|  |js|rtd|j||||||	|
||||||d t|t	r|r|j
|d d S )	Nemptyrp   r  ro   zCan only append to Tablesz0Compression not supported on Fixed format stores)objrH  r   r   r   r   r   r   rI  r   r   r   r<  )r   )rp  _identify_groupr  r8  	is_existsr   set_object_infowriterL   r   rk  )r   r   r   r   rH  r   r   r   r   r   r   r   rI  r   r   r   rW   r   r<  r   rP   rQ   rQ   rR   r?    s:    

zHDFStore._write_to_grouprI   r   c                 C  s   |  |}|  | S rT   )r  r  r  )r   r   rP   rQ   rQ   rR   r	    s    
zHDFStore._read_group)r   r   r   c                 C  sN   |  |}| jdusJ |dur8|s8| jj|dd d}|du rJ| |}|S )z@Identify HDF5 group based on key, delete/create group if needed.NTr@  )r   r   remove_node_create_nodes_and_group)r   r   r   r   rQ   rQ   rR   r    s    

zHDFStore._identify_groupc                 C  sv   | j dusJ |d}d}|D ]P}t|s.q |}|dsD|d7 }||7 }| |}|du rl| j ||}|}q |S )z,Create nodes from key and return group name.Nr   )r   splitri   endswithr   create_group)r   r   pathsr   pnew_pathr   rQ   rQ   rR   r    s    


z HDFStore._create_nodes_and_group)r~   NNF)r   )r~   )F)NNNNFNF)NNN)NN)NNNNNFNF)NTFNNNNNNrw   TF)NNN)NNTTNNNNNNNNNNrw   )NNF)NNN)r   )r   TNNNFT)NNrK   rw   )NTFNNNNNNFNNNrw   T)2r   
__module____qualname____doc____annotations__r   r   propertyr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r   r   r  r#  r;  r   r   r   rh  rl  r   rw  r   r  r  r  r   r>  r  r?  r	  r  r  rQ   rQ   rQ   rR   r     s  
A    "

"-       N   $  +        ~             H=               ]   d   (0       =*    a               >r   c                   @  sj   e Zd ZU dZded< ded< ded< dddd
dd
ddddZdd ZddddZdd
dddZdS )r  aa  
    Define the iteration interface on a table

    Parameters
    ----------
    store : HDFStore
    s     : the referred storer
    func  : the function to execute the query
    where : the where of the query
    nrows : the rows to iterate on
    start : the passed start value (default is None)
    stop  : the passed stop value (default is None)
    iterator : bool, default False
        Whether to use the default iterator.
    chunksize : the passed chunking value (default is 100000)
    auto_close : bool, default False
        Whether to automatically close the store at the end of iteration.
    r   r   r   r   rz  rP   NFr   r   )r   rP   r   r   r   r   c                 C  s   || _ || _|| _|| _| jjrN|d u r,d}|d u r8d}|d u rD|}t||}|| _|| _|| _d | _	|sr|	d ur|	d u r~d}	t
|	| _nd | _|
| _d S )Nr   順 )r   rP   r  rj   r8  minr  r   r   r4  r]   r   r   )r   r   rP   r  rj   r  r   r   r   r   r   rQ   rQ   rR   r   H  s,    
zTableIterator.__init__c                 c  sv   | j }| jd u rtd|| jk rjt|| j | j}| d d | j|| }|}|d u st|sbq|V  q|   d S )Nz*Cannot iterate until get_result is called.)	r   r4  r   r   r  r   r  ri   r   )r   r   r   r   rQ   rQ   rR   r   r  s    

zTableIterator.__iter__r   c                 C  s   | j r| j  d S rT   )r   r   r   r   rQ   rQ   rR   r     s    zTableIterator.closer3  c                 C  s   | j d ur4t| jtstd| jj| jd| _| S |rft| jtsLtd| jj| j| j| j	d}n| j}| 
| j| j	|}|   |S )Nz0can only use an iterator or chunksize on a table)rj   z$can only read_coordinates on a tabler  )r   rL   rP   r   r   r  rj   r4  r   r   r  r   )r   r4  rj   resultsrQ   rQ   rR   r    s    
zTableIterator.get_result)NNFNF)F)	r   r  r  r  r  r   r   r   r  rQ   rQ   rQ   rR   r  0  s   
	     *r  c                   @  s  e Zd ZU dZdZded< dZded< g dZded< ded	< dLddddddZe	ddddZ
e	ddddZdddddZddddZdddddZdddd Ze	ddd!d"Zd#ddd$d%d&d'Zd(d) Ze	d*d+ Ze	d,d- Ze	d.d/ Ze	d0d1 Zd2d3 ZdMddd4d5Zddd6d7Zd8ddd9d:d;ZdNd<d=Zddd>d?d@ZdddAdBZdddCdDZdddEdFZd8ddGdHdIZ d8ddGdJdKZ!d
S )OIndexCola  
    an index column description class

    Parameters
    ----------
    axis   : axis which I reference
    values : the ndarray like converted values
    kind   : a string description of this type
    typ    : the pytables type
    pos    : the position in the pytables

    Tr   is_an_indexableis_data_indexable)freqtz
index_namerY   r[   cnameNr   r   )r[   r  r   c                 C  s   t |tstd|| _|| _|| _|| _|p0|| _|| _|| _	|| _
|	| _|
| _|| _|| _|| _|| _|d ur|| | t | jtsJ t | jtsJ d S )Nz`name` must be a str.)rL   rY   r   r]  rj  typr[   r  r.  posr  r  r  rc  rp   r   metadataset_pos)r   r[   r]  rj  r  r  r.  r  r  r  r  rc  rp   r   r  rQ   rQ   rR   r     s(    


zIndexCol.__init__r]   r   c                 C  s   | j jS rT   )r  itemsizer   rQ   rQ   rR   r    s    zIndexCol.itemsizec                 C  s   | j  dS )N_kindrZ   r   rQ   rQ   rR   	kind_attr  s    zIndexCol.kind_attr)r  r   c                 C  s$   || _ |dur | jdur || j_dS )z,set the position of this column in the TableN)r  r  Z_v_pos)r   r  rQ   rQ   rR   r    s    zIndexCol.set_posc                 C  s@   t tt| j| j| j| j| jf}ddd t	g d|D S )N,c                 S  s   g | ]\}}| d | qS z->rQ   rQ  rQ   rQ   rR   rf     s   z%IndexCol.__repr__.<locals>.<listcomp>)r[   r  r.  r  rj  )
rh   maprF   r[   r  r.  r  rj  joinr7  r   temprQ   rQ   rR   r     s    zIndexCol.__repr__r   otherr   c                   s   t  fdddD S )compare 2 col itemsc                 3  s&   | ]}t |d t  |d kV  qd S rT   rp  r}  r  r   rQ   rR   rO    s   z"IndexCol.__eq__.<locals>.<genexpr>)r[   r  r.  r  rL  r   r  rQ   r  rR   __eq__  s    zIndexCol.__eq__c                 C  s   |  | S rT   )r  r  rQ   rQ   rR   __ne__  s    zIndexCol.__ne__c                 C  s"   t | jdsdS t| jj| jjS )z%return whether I am an indexed columnrN  F)hasattrrp   rp  rN  r  r|  r   rQ   rQ   rR   r|    s    zIndexCol.is_indexed
np.ndarrayzCtuple[np.ndarray, np.ndarray] | tuple[DatetimeIndex, DatetimeIndex]r]  rW   r   r   c           
      C  s  t |tjsJ t||jjdur.|| j }t| j}t	||||}i }t| j
|d< | jdurpt| j|d< t}t|jst|jrt}n|jdkrd|v rdd }z||fi |}W n2 ty   d|v rd|d< ||fi |}Y n0 t|| j}	|	|	fS )zV
        Convert the data from this selection to the appropriate pandas type.
        Nr[   r  i8c                 [  s   t f d| i|S )Nordinal)r5   )r(  kwdsrQ   rQ   rR   r   *  s   z"IndexCol.convert.<locals>.<lambda>)rL   rM   ndarrayr   dtypefieldsr  rS   rj  _maybe_convertr  r  r3   r)   r*   r2   r   _set_tzr  )
r   r]  r   rW   r   val_kindr   factoryZnew_pd_indexZfinal_pd_indexrQ   rQ   rR   convert  s,    


zIndexCol.convertc                 C  s   | j S )zreturn the valuesr]  r   rQ   rQ   rR   	take_data:  s    zIndexCol.take_datac                 C  s   | j jS rT   )rp   rq  r   rQ   rQ   rR   attrs>  s    zIndexCol.attrsc                 C  s   | j jS rT   rp   descriptionr   rQ   rQ   rR   r  B  s    zIndexCol.descriptionc                 C  s   t | j| jdS )z!return my current col descriptionN)rp  r  r  r   rQ   rQ   rR   colF  s    zIndexCol.colc                 C  s   | j S zreturn my cython valuesr  r   rQ   rQ   rR   cvaluesK  s    zIndexCol.cvaluesc                 C  s
   t | jS rT   )r   r]  r   rQ   rQ   rR   r   P  s    zIndexCol.__iter__c                 C  sP   t | jdkrLt|tr$|| j}|durL| jj|k rLt j	|| j
d| _dS )z
        maybe set a string col itemsize:
            min_itemsize can be an integer or a dict with this columns name
            with an integer size
        stringN)r  r  )rS   rj  rL   rJ  r   r[   r  r  r}   	StringColr  )r   r   rQ   rQ   rR   maybe_set_sizeS  s
    
zIndexCol.maybe_set_sizec                 C  s   d S rT   rQ   r   rQ   rQ   rR   validate_names`  s    zIndexCol.validate_namesAppendableTable)handlerr   r   c                 C  s:   |j | _ |   | | | | | | |   d S rT   )rp   validate_colvalidate_attrvalidate_metadatawrite_metadataset_attr)r   r  r   rQ   rQ   rR   validate_and_setc  s    


zIndexCol.validate_and_setc                 C  s^   t | jdkrZ| j}|durZ|du r*| j}|j|k rTtd| d| j d|j d|jS dS )z:validate this column: return the compared against itemsizer  Nz#Trying to store a string with len [z] in [z)] column but
this column has a limit of [zC]!
Consider using min_itemsize to preset the sizes on these columns)rS   rj  r  r  r   r  )r   r  crQ   rQ   rR   r  k  s    
zIndexCol.validate_col)r   r   c                 C  sB   |r>t | j| jd }|d ur>|| jkr>td| d| j dd S )Nzincompatible kind in col [ - r&  )rp  r  r  rj  r   )r   r   Zexisting_kindrQ   rQ   rR   r  ~  s    zIndexCol.validate_attrc                 C  s   | j D ]}t| |d}|| ji }||}||v r|dur||kr|dv rt|||f }tj|tt	 d d||< t
| |d qtd| j d| d| d| d	q|dus|dur|||< qdS )	z
        set/update the info for this indexable with the key/value
        if there is a conflict raise/warn as needed
        N)r  r  r   zinvalid info for [z] for [z], existing_value [z] conflicts with new value [r&  )_info_fieldsrp  
setdefaultr[   r   rm   r   r   r   r$   setattrr   )r   r  r   r   idxexisting_valuewsrQ   rQ   rR   update_info  s*    

zIndexCol.update_infoc                 C  s$   | | j}|dur | j| dS )z!set my state from the passed infoN)r   r[   __dict__update)r   r  r  rQ   rQ   rR   set_info  s    zIndexCol.set_infoc                 C  s   t | j| j| j dS )zset the kind for this columnN)r  r  r  rj  r   rQ   rQ   rR   r    s    zIndexCol.set_attr)r  r   c                 C  sB   | j dkr>| j}|| j}|dur>|dur>t||s>tddS )z:validate that kind=category does not change the categoriescategoryNzEcannot append a categorical with different categories to the existing)r   r  read_metadatar  r0   r   )r   r  Znew_metadataZcur_metadatarQ   rQ   rR   r    s    
zIndexCol.validate_metadatac                 C  s   | j dur|| j| j  dS )zset the meta dataN)r  r  r  )r   r  rQ   rQ   rR   r    s    
zIndexCol.write_metadata)NNNNNNNNNNNNN)N)N)"r   r  r  r  r  r  r  r  r   r  r  r  r  r   r  r  r|  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r  r  rQ   rQ   rQ   rR   r    sf   
             ,-




	!r  c                   @  sD   e Zd ZdZeddddZddddd	d
dZddddZdS )GenericIndexColz:an index which is not represented in the data of the tabler   r   c                 C  s   dS NFrQ   r   rQ   rQ   rR   r|    s    zGenericIndexCol.is_indexedr  rY   ztuple[Int64Index, Int64Index]r  c                 C  s2   t |tjsJ t|ttt|}||fS )z
        Convert the data from this selection to the appropriate pandas type.

        Parameters
        ----------
        values : np.ndarray
        nan_rep : str
        encoding : str
        errors : str
        )rL   rM   r  r   r:   arangeri   )r   r]  r   rW   r   r   rQ   rQ   rR   r    s    zGenericIndexCol.convertr   c                 C  s   d S rT   rQ   r   rQ   rQ   rR   r    s    zGenericIndexCol.set_attrN)r   r  r  r  r  r|  r  r  rQ   rQ   rQ   rR   r    s
   r  c                      s<  e Zd ZdZdZdZddgZd:dddd	 fd
dZeddddZ	eddddZ
ddddZdddddZdddddZdd Zedddd d!Zed"d# Zedd$d%d&d'Zeddd%d(d)Zed*d+ Zed,d- Zed.d/ Zed0d1 Zddd2d3Zd4ddd5d6d7Zddd8d9Z  ZS );DataCola3  
    a data holding column, by definition this is not indexable

    Parameters
    ----------
    data   : the actual data
    cname  : the column name in the table to hold the data (typically
                values)
    meta   : a string description of the metadata
    metadata : the actual metadata
    Fr  rc  NrY   zDtypeArg | Noner   )r[   r  r   c                   s2   t  j|||||||||	|
|d || _|| _d S )N)r[   r]  rj  r  r  r  r  rc  rp   r   r  )superr   r  r  )r   r[   r]  rj  r  r  r  r  rc  rp   r   r  r  r  	__class__rQ   rR   r     s    zDataCol.__init__r   c                 C  s   | j  dS )N_dtyperZ   r   rQ   rQ   rR   
dtype_attr	  s    zDataCol.dtype_attrc                 C  s   | j  dS )N_metarZ   r   rQ   rQ   rR   	meta_attr	  s    zDataCol.meta_attrc                 C  s@   t tt| j| j| j| j| jf}ddd t	g d|D S )Nr  c                 S  s   g | ]\}}| d | qS r  rQ   rQ  rQ   rQ   rR   rf   (	  s   z$DataCol.__repr__.<locals>.<listcomp>)r[   r  r  rj  shape)
rh   r  rF   r[   r  r  rj  r  r  r7  r  rQ   rQ   rR   r   !	  s    zDataCol.__repr__r   r   r  c                   s   t  fdddD S )r  c                 3  s&   | ]}t |d t  |d kV  qd S rT   r  r}  r  rQ   rR   rO  0	  s   z!DataCol.__eq__.<locals>.<genexpr>)r[   r  r  r  r  r  rQ   r  rR   r  .	  s    zDataCol.__eq__r   )r  r   c                 C  s@   |d usJ | j d u sJ t|\}}|| _|| _ t|| _d S rT   )r  _get_data_and_dtype_namer  _dtype_to_kindrj  )r   r  
dtype_namerQ   rQ   rR   set_data5	  s    zDataCol.set_datac                 C  s   | j S )zreturn the datar  r   rQ   rQ   rR   r  ?	  s    zDataCol.take_datarG   )r]  r   c                 C  s   |j }|j}|j}|jdkr&d|jf}t|trJ|j}| j||j j	d}ntt
|sZt|rf| |}nXt|rz| |}nDt|rt j||d d}n&t|r| ||}n| j||j	d}|S )zW
        Get an appropriately typed and shaped pytables.Col object for values.
        r`   rj  r   r  r  )r  r  r  rV  sizerL   r;   codesget_atom_datar[   r)   r*   get_atom_datetime64r.   get_atom_timedelta64r(   r}   Z
ComplexColr-   get_atom_string)r  r]  r  r  r  r  atomrQ   rQ   rR   	_get_atomC	  s$    


zDataCol._get_atomc                 C  s   t  j||d dS )Nr   r  r}   r  r  r  r  rQ   rQ   rR   r#  c	  s    zDataCol.get_atom_stringz	type[Col]rj  r   c                 C  sR   | dr$|dd }d| d}n"| dr4d}n| }| d}tt |S )z0return the PyTables column class for this columnuint   NUIntrG   periodInt64Col)rx  
capitalizerp  r}   )r  rj  Zk4col_nameZkcaprQ   rQ   rR   get_atom_coltypeg	  s    


zDataCol.get_atom_coltypec                 C  s   | j |d|d dS )Nr  r   r  r0  r  r  rj  rQ   rQ   rR   r   v	  s    zDataCol.get_atom_datac                 C  s   t  j|d dS Nr   r1  r}   r-  r  r  rQ   rQ   rR   r!  z	  s    zDataCol.get_atom_datetime64c                 C  s   t  j|d dS r4  r5  r6  rQ   rQ   rR   r"  ~	  s    zDataCol.get_atom_timedelta64c                 C  s   t | jdd S )Nr  )rp  r  r   rQ   rQ   rR   r  	  s    zDataCol.shapec                 C  s   | j S r  r  r   rQ   rQ   rR   r  	  s    zDataCol.cvaluesc                 C  s`   |r\t | j| jd}|dur2|t| jkr2tdt | j| jd}|dur\|| jkr\tddS )zAvalidate that we have the same order as the existing & same dtypeNz4appended items do not match existing items in table!z@appended items dtype do not match existing items dtype in table!)rp  r  r  rg   r]  r   r  r  )r   r   Zexisting_fieldsZexisting_dtyperQ   rQ   rR   r  	  s    zDataCol.validate_attrr  )r]  rW   r   c                 C  s  t |tjsJ t||jjdur.|| j }| jdus<J | jdu r\t|\}}t	|}n|}| j}| j
}t |tjs|J t| j}| j}	| j}
| j}|dusJ t|}|dkrt||dd}n$|dkrtj|dd}n
|dkr6ztjd	d
 |D td}W n, ty2   tjdd
 |D td}Y n0 n|dkr|	}| }|du rftg tjd}n<t|}| r||  }||dk  |t j8  < tj|||
d}n6z|j|dd}W n" ty   |jddd}Y n0 t|dkrt ||||d}| j!|fS )aR  
        Convert the data from this selection to the appropriate pandas type.

        Parameters
        ----------
        values : np.ndarray
        nan_rep :
        encoding : str
        errors : str

        Returns
        -------
        index : listlike to become an Index
        data : ndarraylike to become a column
        N
datetime64Tcoercetimedelta64m8[ns]r  r   c                 S  s   g | ]}t |qS rQ   r   fromordinalrb   rR  rQ   rQ   rR   rf   	  r   z#DataCol.convert.<locals>.<listcomp>c                 S  s   g | ]}t |qS rQ   r   fromtimestampr?  rQ   rQ   rR   rf   	  r   r	  )
categoriesrc  Fr  Or  r   rW   r   )"rL   rM   r  r   r  r  r  r  r  r  rj  rS   r   r  rc  r  r  asarrayobjectr   ravelr3   float64r9   anyastyper]   cumsum_valuesr;   
from_codesr   _unconvert_string_arrayr]  )r   r]  r   rW   r   	convertedr  rj  r   r  rc  r  r  rC  r  maskrQ   rQ   rR   r  	  sf    









 zDataCol.convertc                 C  sH   t | j| j| j t | j| j| j | jdus2J t | j| j| j dS )zset the data for this columnN)r  r  r  r]  r  r   r  r  r   rQ   rQ   rR   r  	  s    zDataCol.set_attr)NNNNNNNNNNNN)r   r  r  r  r  r  r  r   r  r  r  r   r  r  r  classmethodr%  r#  r0  r   r!  r"  r  r  r  r  r  __classcell__rQ   rQ   r  rR   r    sX                





er  c                   @  sZ   e Zd ZdZdZddddZedd Zed	d
dddZedd Z	edd Z
dS )DataIndexableColz+represent a data column that can be indexedTr   r   c                 C  s   t | j stdd S )N-cannot have non-object label DataIndexableCol)r3   r]  	is_objectr   r   rQ   rQ   rR   r  

  s    zDataIndexableCol.validate_namesc                 C  s   t  j|dS )N)r  r&  r'  rQ   rQ   rR   r#  
  s    z DataIndexableCol.get_atom_stringrY   rG   r(  c                 C  s   | j |d S )Nr  r2  r3  rQ   rQ   rR   r   
  s    zDataIndexableCol.get_atom_datac                 C  s
   t   S rT   r5  r6  rQ   rQ   rR   r!  
  s    z$DataIndexableCol.get_atom_datetime64c                 C  s
   t   S rT   r5  r6  rQ   rQ   rR   r"  
  s    z%DataIndexableCol.get_atom_timedelta64N)r   r  r  r  r  r  rS  r#  r   r!  r"  rQ   rQ   rQ   rR   rU  
  s   

rU  c                   @  s   e Zd ZdZdS )GenericDataIndexableColz(represent a generic pytables data columnN)r   r  r  r  rQ   rQ   rQ   rR   rX   
  s   rX  c                   @  s  e Zd ZU dZded< dZded< ded< ded	< ded
< ded< ded< ded< dZded< dPddddddddZeddddZ	eddddZ
edd  Zddd!d"Zddd#d$Zd dd%d&Zed'd( Zed)d* Zed+d, Zed-d. Zeddd/d0Zeddd1d2Zed3d4 Zddd5d6Zddd7d8Zed9d: Zeddd;d<Zed=d> Zd?dd@dAZdQdddCdDZdddEdFZdRdGdGdHdIdJZdKdL ZdSdGdGddMdNdOZ dBS )TFixedz
    represent an object in my store
    facilitate read/write of various types of objects
    this is an abstract base class

    Parameters
    ----------
    parent : HDFStore
    group : Node
        The group node where the table resides.
    rY   pandas_kindro   format_typetype[DataFrame | Series]obj_typer]   rV  rW   r   r   rI   r   r   Fr   r8  rK   rw   r   )r   r   rW   r   r   c                 C  sZ   t |tsJ t|td us"J t |tjs:J t||| _|| _t|| _|| _	d S rT   )
rL   r   r   rx   rI   r   r   rX   rW   r   )r   r   r   rW   r   rQ   rQ   rR   r   =
  s    
zFixed.__init__r   c                 C  s*   | j d dko(| j d dko(| j d dk S )Nr   r`   
      )versionr   rQ   rQ   rR   is_old_versionL
  s    zFixed.is_old_versionztuple[int, int, int]c                 C  s`   t t| jjdd}z0tdd |dD }t|dkrB|d }W n tyZ   d}Y n0 |S )	zcompute and set our versionpandas_versionNc                 s  s   | ]}t |V  qd S rT   r]   r'  rQ   rQ   rR   rO  U
  r   z Fixed.version.<locals>.<genexpr>.r_  r)  )r   r   r   )rS   rp  r   rq  rh   r  ri   rz   )r   r`  rQ   rQ   rR   r`  P
  s    
zFixed.versionc                 C  s   t t| jjdd S )Nrm  )rS   rp  r   rq  r   rQ   rQ   rR   rm  \
  s    zFixed.pandas_typec                 C  s^   |    | j}|durXt|ttfrDddd |D }d| d}| jdd| d	S | jS )
(return a pretty representation of myselfNr  c                 S  s   g | ]}t |qS rQ   rF   r'  rQ   rQ   rR   rf   f
  r   z"Fixed.__repr__.<locals>.<listcomp>[r&  12.12z	 (shape->))r  r  rL   rg   rh   r  rm  )r   rP   ZjshaperQ   rQ   rR   r   `
  s    zFixed.__repr__c                 C  s   t | j| j_t t| j_dS )zset my pandas type & versionN)rY   rZ  r  rm  _versionrb  r   rQ   rQ   rR   r  k
  s    zFixed.set_object_infoc                 C  s   t  | }|S rT   rD  )r   new_selfrQ   rQ   rR   r  p
  s    
z
Fixed.copyc                 C  s   | j S rT   )r  r   rQ   rQ   rR   r  t
  s    zFixed.shapec                 C  s   | j jS rT   r   r   r   rQ   rQ   rR   r9  x
  s    zFixed.pathnamec                 C  s   | j jS rT   )r   r   r   rQ   rQ   rR   r   |
  s    zFixed._handlec                 C  s   | j jS rT   )r   r   r   rQ   rQ   rR   r   
  s    zFixed._filtersc                 C  s   | j jS rT   )r   r   r   rQ   rQ   rR   r   
  s    zFixed._complevelc                 C  s   | j jS rT   )r   r   r   rQ   rQ   rR   r   
  s    zFixed._fletcher32c                 C  s   | j jS rT   )r   rq  r   rQ   rQ   rR   r  
  s    zFixed.attrsc                 C  s   dS zset our object attributesNrQ   r   rQ   rQ   rR   	set_attrs
  s    zFixed.set_attrsc                 C  s   dS )zget our object attributesNrQ   r   rQ   rQ   rR   	get_attrs
  s    zFixed.get_attrsc                 C  s   | j S )zreturn my storabler  r   rQ   rQ   rR   storable
  s    zFixed.storablec                 C  s   dS r  rQ   r   rQ   rQ   rR   r  
  s    zFixed.is_existsc                 C  s   t | jdd S )Nr  )rp  rp  r   rQ   rQ   rR   r  
  s    zFixed.nrowszLiteral[True] | Nonec                 C  s   |du rdS dS )z%validate against an existing storableNTrQ   r  rQ   rQ   rR   validate
  s    zFixed.validateNc                 C  s   dS )+are we trying to operate on an old version?NrQ   )r   rj   rQ   rQ   rR   validate_version
  s    zFixed.validate_versionc                 C  s   | j }|du rdS |   dS )zr
        infer the axes of my storer
        return a boolean indicating if we have a valid storer or not
        NFT)rp  ro  )r   rP   rQ   rQ   rR   r  
  s
    zFixed.infer_axesr   r   r   c                 C  s   t dd S )Nz>cannot read on an abstract storer: subclasses should implementr   r   rj   r   r   r   rQ   rQ   rR   r  
  s    z
Fixed.readc                 K  s   t dd S )Nz?cannot write on an abstract storer: subclasses should implementru  r   r   rQ   rQ   rR   r  
  s    zFixed.writer   r   r   c                 C  s0   t |||r$| jj| jdd dS tddS )zs
        support fully deleting the node in its entirety (only) - where
        specification must be None
        Tr@  Nz#cannot delete on an abstract storer)rD  rE  r   r  r   r   )r   rj   r   r   rQ   rQ   rR   rF  
  s    zFixed.delete)rK   rw   )N)NNNN)NNN)!r   r  r  r  r  r[  r8  r   r  ra  r`  rm  r   r  r  r  r9  r   r   r   r   r  rn  ro  rp  r  r  rq  rs  r  r  r  rF  rQ   rQ   rQ   rR   rY  &
  sn   
  







     rY  c                   @  sF  e Zd ZU dZedediZdd e D Zg Z	de
d< dd	d
dZdd Zdd Zdd	ddZedd	ddZdd	ddZdd	ddZdd	ddZd:dddddd Zd;dddd!d"d#d$Zdd!dd%d&d'Zdd(dd%d)d*Zd<dddd(d"d+d,Zd=d-ddd!d.d/d0Zdd1dd2d3d4Zd>dd5d6dd7d8d9ZdS )?GenericFixedza generified fixed versiondatetimer,  c                 C  s   i | ]\}}||qS rQ   rQ   )rb   r%  rR  rQ   rQ   rR   rS  
  r   zGenericFixed.<dictcomp>r   
attributesrY   r   c                 C  s   | j |dS )N )_index_type_mapr   )r   r  rQ   rQ   rR   _class_to_alias
  s    zGenericFixed._class_to_aliasc                 C  s   t |tr|S | j|tS rT   )rL   r   _reverse_index_mapr   r3   )r   aliasrQ   rQ   rR   _alias_to_class
  s    
zGenericFixed._alias_to_classc                 C  s   |  tt|dd}|tkr.d	dd}|}n|tkrFd
dd}|}n|}i }d|v rn|d |d< |tu rnt}d|v rt|d tr|d 	d|d< n|d |d< |tu sJ ||fS )Nindex_classr|  c                 S  s:   t j| j|d}tj|d d}|d ur6|d|}|S )Nr  rZ   UTC)r<   _simple_newr]  r2   tz_localize
tz_convert)r]  r  r  dtaresultrQ   rQ   rR   rq   
  s
    z*GenericFixed._get_index_factory.<locals>.fc                 S  s   t j| |d}tj|d dS )Nr  rZ   )r=   r  r5   )r]  r  r  parrrQ   rQ   rR   rq   
  s    r  r  zutf-8)NN)NN)
r  rS   rp  r2   r5   r3   r7   rL   bytesrO   )r   r  r  rq   r  r   rQ   rQ   rR   _get_index_factory
  s*    

zGenericFixed._get_index_factoryr   c                 C  s$   |durt d|dur t ddS )zE
        raise if any keywords are passed which are not-None
        Nzqcannot pass a column specification when reading a Fixed format store. this store must be selected in its entiretyzucannot pass a where specification when reading from a Fixed format store. this store must be selected in its entirety)r   )r   r   rj   rQ   rQ   rR   validate_read  s    zGenericFixed.validate_readr   c                 C  s   dS )NTrQ   r   rQ   rQ   rR   r  &  s    zGenericFixed.is_existsc                 C  s   | j | j_ | j| j_dS rm  )rW   r  r   r   rQ   rQ   rR   rn  *  s    
zGenericFixed.set_attrsc              	   C  sR   t t| jdd| _tt| jdd| _| jD ]}t| |tt| j|d q.dS )retrieve our attributesrW   Nr   rw   )rX   rp  r  rW   rS   r   r{  r  )r   r   rQ   rQ   rR   ro  /  s    
zGenericFixed.get_attrsc                 K  s   |    d S rT   )rn  r   r  r   rQ   rQ   rR   r  7  s    zGenericFixed.writeNr   r  c                 C  s   ddl }t| j|}|j}t|dd}t||jrD|d || }nztt|dd}	t|dd}
|
durxtj|
|	d}n||| }|	dkrt|d	d}t	||d
d}n|	dkrtj
|dd}|r|jS |S dS )z2read an array for the specified node (off of groupr   N
transposedF
value_typer  r<  r7  r  Tr8  r:  r;  )ry   rp  r   rq  rL   ZVLArrayrS   rM   r  r  rG  T)r   r   r   r   ry   r   r  r  retr  r  r  rQ   rQ   rR   
read_array:  s&    zGenericFixed.read_arrayr3   )r   r   r   r   c                 C  sh   t t| j| d}|dkr.| j|||dS |dkrVt| j|}| j|||d}|S td| d S )N_varietymultirt  regularzunrecognized index variety: )rS   rp  r  read_multi_indexr   read_index_noder   )r   r   r   r   varietyr   r   rQ   rQ   rR   
read_index\  s    zGenericFixed.read_index)r   r   r   c                 C  s   t |tr,t| j| dd | || nt| j| dd td|| j| j}| ||j	 t
| j|}|j|j_|j|j_t |ttfr| t||j_t |tttfr|j|j_t |tr|jd urt|j|j_d S )Nr  r  r  r   )rL   r4   r  r  write_multi_index_convert_indexrW   r   write_arrayr]  rp  r   rj  rq  r[   r2   r5   r~  r   r  r7   r  r  _get_tz)r   r   r   rQ  r   rQ   rQ   rR   write_indexj  s    



zGenericFixed.write_indexr4   c                 C  s   t | j| d|j tt|j|j|jD ]\}\}}}t|rJt	d| d| }t
||| j| j}| ||j t| j|}	|j|	j_||	j_t |	j| d| | | d| }
| |
| q,d S )N_nlevelsz=Saving a MultiIndex with an extension dtype is not supported._level_name_label)r  r  r  	enumerater7  levelsr  namesr+   r   r  rW   r   r  r]  rp  r   rj  rq  r[   )r   r   r   ilevlevel_codesr[   	level_keyZ
conv_levelr   	label_keyrQ   rQ   rR   r    s"    
zGenericFixed.write_multi_indexc                 C  s   t | j| d}g }g }g }t|D ]l}| d| }	t | j|	}
| j|
||d}|| ||j | d| }| j|||d}|| q&t|||ddS )Nr  r  rt  r  T)r  r  r  r/  )	rp  r  rU  r   r  r   r[   r  r4   )r   r   r   r   r  r  r  r  r  r  r   r  r  r  rQ   rQ   rR   r    s     
zGenericFixed.read_multi_indexrI   )r   r   r   r   c                 C  s   ||| }d|j v r>t|j jdkr>tj|j j|j jd}t|j j}d }d|j v rlt|j j	}t|}|j }| 
|\}}	|dkr|t||| j| jdfdti|	}
n |t||| j| jdfi |	}
||
_	|
S )Nr  r   r<  r[   r   r  r  )rq  rM   prodr  r  r  rS   rj  r\   r[   r  _unconvert_indexrW   r   rH  )r   r   r   r   r  rj  r[   r  r  r   r   rQ   rQ   rR   r    s:    
zGenericFixed.read_index_noder   )r   r   r   c                 C  sJ   t d|j }| j| j|| t| j|}t|j|j	_
|j|j	_dS )zwrite a 0-len arrayr`   N)rM   r  rV  r   create_arrayr   rp  rY   r  rq  r  r  )r   r   r   arrr   rQ   rQ   rR   write_array_empty  s
    zGenericFixed.write_array_emptyr   zIndex | None)r   r  r   r   c                 C  sJ  t |dd}|| jv r&| j| j| |jdk}d}t|jrFtd|s^t|dr^|j	}d}d }| j
d urtt  t j|j}W d    n1 s0    Y  |d ur|s| jj| j|||j| j
d}||d d < n| || nL|jjtjkr`tj|dd}	|rn,|	d	krn t|	||f }
tj|
tt d
 | j| j|t  }|| nt |jr| j!| j||"d dt#| j|j$_%nt&|jr| j!| j||j' t#| j|}t(|j)|j$_)d|j$_%n\t*|jr| j!| j||"d dt#| j|j$_%n&|r$| || n| j!| j|| |t#| j|j$_+d S )NT)extract_numpyr   Fz]Cannot store a category dtype in a HDF5 dataset that uses format="fixed". Use format="table".r  )r   skipnar  r   r  r7  r:  ),r@   r   r   r  r  r'   r  r   r  r  r   r   r   r}   AtomZ
from_dtypeZcreate_carrayr  r  r   rM   object_r   infer_dtypern   r   r   r!   r$   Zcreate_vlarray
ObjectAtomr   r)   r  viewrp  rq  r  r*   asi8r  r  r.   r  )r   r   r  r   r   Zempty_arrayr  r$  cainferred_typer  Zvlarrr   rQ   rQ   rR   r    sf    





.


zGenericFixed.write_array)NN)NN)NN)NN)N)r   r  r  r  r2   r5   r}  r   r  r{  r  r~  r  r  r  r  r  rn  ro  r  r  r  r  r  r  r  r  r  rQ   rQ   rQ   rR   ry  
  s2   
.#   &
 ry  c                      sV   e Zd ZU dZdgZded< edd Zddddd	d
dZdd fddZ	  Z
S )r  r  r[   r   c              	   C  s.   zt | jjfW S  ttfy(   Y d S 0 d S rT   )ri   r   r]  r   rz   r   rQ   rQ   rR   r  A  s    zSeriesFixed.shapeNr   r6   rx  c                 C  s<   |  || | jd||d}| jd||d}t||| jdS )Nr   rt  r]  )r   r[   )r  r  r  r6   r[   )r   rj   r   r   r   r   r]  rQ   rQ   rR   r  H  s    zSeriesFixed.readr   r   c                   s<   t  j|fi | | d|j | d| |j| j_d S )Nr   r]  )r  r  r  r   r  r[   r  r  r  rQ   rR   r  U  s    zSeriesFixed.write)NNNN)r   r  r  rZ  r{  r  r  r  r  r  rT  rQ   rQ   r  rR   r  ;  s   

    r  c                      sZ   e Zd ZU ddgZded< eddddZdd	d	d
dddZdd fddZ  Z	S )BlockManagerFixedrV  nblocksr]   zShape | Noner   c                 C  s   z| j }d}t| jD ]8}t| jd| d}t|dd }|d ur||d 7 }q| jj}t|dd }|d urt|d|d  }ng }|| |W S  ty   Y d S 0 d S )Nr   block_itemsr  r`   )	rV  rU  r  rp  r   Zblock0_valuesrg   r   rz   )r   rV  r   r  r   r  rQ   rQ   rR   r  a  s"    
zBlockManagerFixed.shapeNr   r1   rx  c                 C  s  |  || |  d}g }t| jD ]<}||kr<||fnd\}}	| jd| ||	d}
||
 q(|d }g }t| jD ]Z}| d| d}| jd| d||	d}||	| }t
|j||d d	}|| q|t|dkrt|dd
}|j|dd}|S t
|d |d d	S )Nr   )NNr.  rt  r  r  rN  r`   r   r   rP  F)r   r  )r  r]  _get_block_manager_axisrU  rV  r  r   r  r  r[  r1   r  ri   r8   rb  )r   rj   r   r   r   Zselect_axisrH  r  r  r  axr   dfs	blk_itemsr]  dfoutrQ   rQ   rR   r  |  s(    zBlockManagerFixed.readr   c                   s   t  j|fi | t|jtr*|d}|j}| s@| }|j| j	_t
|jD ]0\}}|dkrr|jsrtd| d| | qTt|j| j	_t
|jD ]D\}}|j|j}| jd| d|j|d | d| d| qd S )Nr  r   z/Columns index has to be unique for fixed formatr.  rN  )r   r  )r  r  rL   _mgrrB   _as_manageris_consolidatedconsolidaterV  r  r  rH  	is_uniquer   r  ri   blocksr  r   r\  mgr_locsr  r]  )r   r  r   r  r  r  blkr  r  rQ   rR   r    s     

zBlockManagerFixed.write)NNNN)
r   r  r  r{  r  r  r  r  r  rT  rQ   rQ   r  rR   r  \  s   
    &r  c                   @  s   e Zd ZdZeZdS )r  r  N)r   r  r  rZ  r1   r]  rQ   rQ   rQ   rR   r    s   r  c                      s  e Zd ZU dZdZdZded< ded< dZded	< d
Zded< ded< ded< ded< ded< ded< dddddd fddZ	e
dddd Zddd!d"Zdd#d$d%Zddd&d'Ze
d(dd)d*Zd+d,d-d.d/Ze
d0dd1d2Ze
d(dd3d4Ze
d5d6 Ze
d7d8 Ze
d9d: Ze
d;d< Ze
d=d> Ze
d0dd?d@Ze
d(ddAdBZe
dCddDdEZdFddGdHZdIdJ ZdKddLdMZdddNdOdPZddQddRdSdTZddUdVdWZ dddXdYZ!dddZd[Z"dddd\d]Z#ddd^d_Z$e%d`da Z&ddbddcdddeZ'ddfdfdgdhdidjZ(e)d(dkdldmZ*dndo Z+ddpd(dqdrdsZ,e-dpd(dtdudvZ.ddwdpdxdydzZ/dfd(dfdFd{d|d}Z0ddfdfd~ddZ1dddfdfdddZ2  Z3S )r   aa  
    represent a table:
        facilitate read/write of various types of tables

    Attrs in Table Node
    -------------------
    These are attributes that are store in the main table node, they are
    necessary to recreate these tables when read back in.

    index_axes    : a list of tuples of the (original indexing axis and
        index column)
    non_index_axes: a list of tuples of the (original index axis and
        columns on a non-indexing axis)
    values_axes   : a list of the columns which comprise the data of this
        table
    data_columns  : a list of the columns that we are allowing indexing
        (these become single columns in values_axes)
    nan_rep       : the string to use for nan representations for string
        objects
    levels        : the names of levels
    metadata      : the names of the metadata columns
    Z
wide_tablerp   rY   r[  r  r`   zint | list[Hashable]r  Tzlist[IndexCol]
index_axeszlist[tuple[int, Any]]r*  zlist[DataCol]values_axesrg   r   r  rJ  r  Nrw   r   rI   r   )r   r   r   r   c                   sP   t  j||||d |pg | _|p$g | _|p.g | _|p8g | _|	pBi | _|
| _d S )Nr  )r  r   r  r*  r  r   r  r   )r   r   r   rW   r   r  r*  r  r   r  r   r  rQ   rR   r     s    




zTable.__init__r   c                 C  s   | j dd S )N_r   )r  r  r   rQ   rQ   rR   table_type_short  s    zTable.table_type_shortc                 C  s   |    t| jrd| jnd}d| d}d}| jrZddd | jD }d| d}dd	d | jD }| jd
| d| j d| j	 d| j
 d| d| dS )re  r  r|  z,dc->[r&  rd  c                 S  s   g | ]}t |qS rQ   rY   r'  rQ   rQ   rR   rf     r   z"Table.__repr__.<locals>.<listcomp>rg  c                 S  s   g | ]
}|j qS rQ   rZ   r}  rQ   rQ   rR   rf   
  r   rh  z (typ->z,nrows->z,ncols->z,indexers->[ri  )r  ri   r   r  ra  r`  r  rm  r  r  ncols)r   Zjdcre  verZjverZjindex_axesrQ   rQ   rR   r     s(    zTable.__repr__)r  c                 C  s"   | j D ]}||jkr|  S qdS )zreturn the axis for cN)rH  r[   )r   r  r~   rQ   rQ   rR   r     s    


zTable.__getitem__c              
   C  s   |du rdS |j | j kr2td|j  d| j  ddD ]~}t| |d}t||d}||kr6t|D ]4\}}|| }||krbtd| d| d| dqbtd| d| d| dq6dS )	z"validate against an existing tableNz'incompatible table_type with existing [r  r&  )r  r*  r  zinvalid combination of [z] on appending data [z] vs current table [)r  r   rp  r  r   rC  )r   r  r  svovr  saxZoaxrQ   rQ   rR   rq    s:    zTable.validater   c                 C  s   t | jtS )z@the levels attribute is 1 or a list in the case of a multi-index)rL   r  rg   r   rQ   rQ   rR   is_multi_index:  s    zTable.is_multi_indexr   z tuple[DataFrame, list[Hashable]])r  r   c              
   C  s`   t |jj}z| }W n. tyH } ztd|W Y d}~n
d}~0 0 t|tsXJ ||fS )ze
        validate that we can store the multi-index; reset and return the
        new object
        zBduplicate names/columns in the multi-index when storing as a tableN)rD  fill_missing_namesr   r  reset_indexr   rL   r1   )r   r  r  Z	reset_objrG  rQ   rQ   rR   validate_multiindex?  s    zTable.validate_multiindexr]   c                 C  s   t dd | jD S )z-based on our axes, compute the expected nrowsc                 S  s   g | ]}|j jd  qS r)  )r  r  rb   r  rQ   rQ   rR   rf   S  r   z(Table.nrows_expected.<locals>.<listcomp>)rM   r  r  r   rQ   rQ   rR   nrows_expectedP  s    zTable.nrows_expectedc                 C  s
   d| j v S )zhas this table been createdrp   r  r   rQ   rQ   rR   r  U  s    zTable.is_existsc                 C  s   t | jdd S Nrp   rp  r   r   rQ   rQ   rR   rp  Z  s    zTable.storablec                 C  s   | j S )z,return the table group (this is my storable))rp  r   rQ   rQ   rR   rp   ^  s    zTable.tablec                 C  s   | j jS rT   )rp   r  r   rQ   rQ   rR   r  c  s    zTable.dtypec                 C  s   | j jS rT   r  r   rQ   rQ   rR   r  g  s    zTable.descriptionc                 C  s   t | j| jS rT   )r5  r6  r  r  r   rQ   rQ   rR   rH  k  s    z
Table.axesc                 C  s   t dd | jD S )z.the number of total columns in the values axesc                 s  s   | ]}t |jV  qd S rT   )ri   r]  r}  rQ   rQ   rR   rO  r  r   zTable.ncols.<locals>.<genexpr>)sumr  r   rQ   rQ   rR   r  o  s    zTable.ncolsc                 C  s   dS r  rQ   r   rQ   rQ   rR   is_transposedt  s    zTable.is_transposedztuple[int, ...]c                 C  s(   t tdd | jD dd | jD S )z@return a tuple of my permutated axes, non_indexable at the frontc                 S  s   g | ]}t |d  qS r)  rc  r}  rQ   rQ   rR   rf   }  r   z*Table.data_orientation.<locals>.<listcomp>c                 S  s   g | ]}t |jqS rQ   )r]   r.  r}  rQ   rQ   rR   rf   ~  r   )rh   r5  r6  r*  r  r   rQ   rQ   rR   data_orientationx  s    zTable.data_orientationzdict[str, Any]c                   sR   ddd dd j D } fddjD }fddjD }t|| | S )z<return a dict of the kinds allowable columns for this objectr   r   r   r`   c                 S  s   g | ]}|j |fqS rQ   r  r}  rQ   rQ   rR   rf     r   z$Table.queryables.<locals>.<listcomp>c                   s   g | ]\}} | d fqS rT   rQ   )rb   r.  r]  )
axis_namesrQ   rR   rf     r   c                   s&   g | ]}|j t jv r|j|fqS rQ   )r[   rT  r   r  r?  r   rQ   rR   rf     s   )r  r*  r  rJ  )r   d1d2Zd3rQ   )r  r   rR   
queryables  s    

zTable.queryablesc                 C  s   dd | j D S )zreturn a list of my index colsc                 S  s   g | ]}|j |jfqS rQ   )r.  r  r  rQ   rQ   rR   rf     r   z$Table.index_cols.<locals>.<listcomp>r  r   rQ   rQ   rR   
index_cols  s    zTable.index_colsr   c                 C  s   dd | j D S )zreturn a list of my values colsc                 S  s   g | ]
}|j qS rQ   r  r  rQ   rQ   rR   rf     r   z%Table.values_cols.<locals>.<listcomp>)r  r   rQ   rQ   rR   values_cols  s    zTable.values_colsr   c                 C  s   | j j}| d| dS )z)return the metadata pathname for this keyz/meta/z/metarl  r
  rQ   rQ   rR   _get_metadata_path  s    zTable._get_metadata_pathr  )r   r]  r   c                 C  s,   | j j| |t|d| j| j| jd dS )z
        Write out a metadata array to the key as a fixed-format Series.

        Parameters
        ----------
        key : str
        values : ndarray
        rp   )r   rW   r   r   N)r   r   r  r6   rW   r   r   )r   r   r]  rQ   rQ   rR   r    s    	zTable.write_metadatar   c                 C  s0   t t | jdd|ddur,| j| |S dS )z'return the meta data array for this keyr   N)rp  r   r   r   r  r   rQ   rQ   rR   r
    s    zTable.read_metadatac                 C  sp   t | j| j_|  | j_|  | j_| j| j_| j| j_| j| j_| j| j_| j	| j_	| j
| j_
| j| j_dS )zset our table type & indexablesN)rY   r  r  r  r  r*  r   r   rW   r   r  r  r   rQ   rQ   rR   rn    s    





zTable.set_attrsc                 C  s   t | jddpg | _t | jddp$g | _t | jddp8i | _t | jdd| _tt | jdd| _tt | jdd| _	t | jd	dpg | _
d
d | jD | _dd | jD | _dS )r  r*  Nr   r  r   rW   r   rw   r  c                 S  s   g | ]}|j r|qS rQ   r  r}  rQ   rQ   rR   rf     r   z#Table.get_attrs.<locals>.<listcomp>c                 S  s   g | ]}|j s|qS rQ   r  r}  rQ   rQ   rR   rf     r   )rp  r  r*  r   r  r   rX   rW   rS   r   r  
indexablesr  r  r   rQ   rQ   rR   ro    s    zTable.get_attrsc                 C  s>   |dur:| j r:tddd | jD  }tj|tt d dS )rr  Nrd  c                 S  s   g | ]}t |qS rQ   r  r'  rQ   rQ   rR   rf     r   z*Table.validate_version.<locals>.<listcomp>r   )ra  rl   r  r`  r   r   r    r$   )r   rj   r  rQ   rQ   rR   rs    s    zTable.validate_versionc                 C  sR   |du rdS t |tsdS |  }|D ]&}|dkr4q&||vr&td| dq&dS )z
        validate the min_itemsize doesn't contain items that are not in the
        axes this needs data_columns to be defined
        Nr]  zmin_itemsize has the key [z%] which is not an axis or data_column)rL   rJ  r  r   )r   r   qr%  rQ   rQ   rR   validate_min_itemsize  s    

zTable.validate_min_itemsizec                   s   g }j jjtjjD ]j\}\}}t|}|}|durJdnd}| d}t|d}	t||||	|j||d}
||
 qt	j
t|  fdd|fddtjjD  |S )	z/create/cache the indexables if they don't existNr	  r  )r[   r.  r  rj  r  rp   r   r  c                   s   t |tsJ t}|v rt}t|}t|j}t| dd }t| dd }t|}|}t| dd }	||||| |  |j	|	||d
}
|
S )Nr  r  r  )
r[   r  r]  rj  r  r  rp   r   r  r  )
rL   rY   r  rU  rp  _maybe_adjust_namer`  r  r
  rp   )r  r  klassr$  adj_namer]  r  rj  mdr   r  )base_posre  descr   table_attrsrQ   rR   rq     s0    

zTable.indexables.<locals>.fc                   s   g | ]\}} ||qS rQ   rQ   )rb   r  r  )rq   rQ   rR   rf   :  r   z$Table.indexables.<locals>.<listcomp>)r  rp   r  r  r  rp  r
  r  r   rT  r   ri   rX  r  )r   _indexablesr  r.  r[   r$  r  r   r  rj  	index_colrQ   )r  re  r  rq   r   r  rR   r    s2    




% zTable.indexablesr   r(  c              	   C  sV  |   sdS |du rdS |du s(|du r8dd | jD }t|ttfsL|g}i }|dur`||d< |durp||d< | j}|D ]}t|j|d}|dur"|jr|j	}|j
}	|j}
|dur|
|kr|  n|
|d< |dur|	|kr|  n|	|d< |jsP|jdrtd	|jf i | qz|| jd
 d v rztd| d| d| dqzdS )aZ  
        Create a pytables index on the specified columns.

        Parameters
        ----------
        columns : None, bool, or listlike[str]
            Indicate which columns to create an index on.

            * False : Do not create any indexes.
            * True : Create indexes on all columns.
            * None : Create indexes on all columns.
            * listlike : Create indexes on the given columns.

        optlevel : int or None, default None
            Optimization level, if None, pytables defaults to 6.
        kind : str or None, default None
            Kind of index, if None, pytables defaults to "medium".

        Raises
        ------
        TypeError if trying to create an index on a complex-type column.

        Notes
        -----
        Cannot index Time64Col or ComplexCol.
        Pytables must be >= 3.0.
        NFTc                 S  s   g | ]}|j r|jqS rQ   )r  r  r}  rQ   rQ   rR   rf   c  r   z&Table.create_index.<locals>.<listcomp>ri  rj  complexzColumns containing complex values can be stored but cannot be indexed when using table format. Either use fixed format, set index=False, or do not include the columns containing complex values to data_columns when initializing the table.r   r`   zcolumn z/ is not a data_column.
In order to read column z: you must reload the dataframe 
into HDFStore and include z  with the data_columns argument.)r  rH  rL   rh   rg   rp   rp  rN  r|  r   ri  rj  remove_indexr   rx  r   rk  r*  rz   )r   r   ri  rj  kwrp   r  rR  r   Zcur_optlevelZcur_kindrQ   rQ   rR   rk  >  sR    


zTable.create_indexr   z!list[tuple[ArrayLike, ArrayLike]]rx  c           	      C  sZ   t | |||d}| }g }| jD ]2}|| j |j|| j| j| jd}|	| q"|S )a  
        Create the axes sniffed from the table.

        Parameters
        ----------
        where : ???
        start : int or None, default None
        stop : int or None, default None

        Returns
        -------
        List[Tuple[index_values, column_values]]
        r  rF  )
	Selectionr   rH  r  r  r  r   rW   r   r   )	r   rj   r   r   	selectionr]  r  r~   resrQ   rQ   rR   
_read_axes  s    
zTable._read_axesr  c                 C  s   |S )zreturn the data for this objrQ   r  r  r  rQ   rQ   rR   
get_object  s    zTable.get_objectc                   s   t |sg S |d \} | j|i }|ddkrL|rLtd| d| |du r^t }n|du rjg }t|trt|t|}|fdd	|	 D   fd
d	|D S )zd
        take the input data_columns and min_itemize and create a data
        columns spec
        r   r   r4   z"cannot use a multi-index on axis [z] with data_columns TNc                   s    g | ]}|d kr| vr|qS r  rQ   r$  )existing_data_columnsrQ   rR   rf     s   z/Table.validate_data_columns.<locals>.<listcomp>c                   s   g | ]}| v r|qS rQ   rQ   )rb   r  )axis_labelsrQ   rR   rf     r   )
ri   r  r   r   rg   rL   rJ  rT  rX  r   )r   r   r   r*  r.  r  rQ   )r  r  rR   validate_data_columns  s.    


	zTable.validate_data_columnsr1   )r  rq  c           /        s  t ts,| jj}td| dt d du r:dg fdd D  |  rzd}d	d | jD  t| j	}| j
}nd
}| j}	| jdksJ t | jd krtdg }
|du rd} fdddD d }j| }t|}|r<t|
}| j| d }tt|t|s<ttt|tt|r<|}|	|i }t|j|d< t|j|d< |
||f  d }j| }|}t||| j| j}||_|d ||	 | | |g}t|}|dksJ t|
dksJ |
D ]}t!|d |d q|jdk}| "|||
}| #|$ }| %|||
| j&|\}}g }t't(||D ]\}\}}t)}d}|rt|dkr|d |v rt*}|d }|du st |t+std|r(|r(z| j&| }W nD t,t-fy$ }  z&td| d| j& d| W Y d} ~ n
d} ~ 0 0 nd}|p:d| }!t.|!|j/|||| j| j|d}"t0|!| j1}#|2|"}$t3|"j4j5}%d}&t6|"dddurt7|"j8}&d }' }(})t9|"j4r|"j:})d}'tj|"j;d
d< }(t=|"\}*}+||#|!t||$||%|&|)|'|(|+|*d},|,|	 ||, |d7 }qddd |D }-t| | j>| j| j| j||
||-|	|d
}.t?| drl| j@|._@|.A| |r|r|.B|  |.S )a0  
        Create and return the axes.

        Parameters
        ----------
        axes: list or None
            The names or numbers of the axes to create.
        obj : DataFrame
            The object to create axes on.
        validate: bool, default True
            Whether to validate the obj against an existing object already written.
        nan_rep :
            A value to use for string column nan_rep.
        data_columns : List[str], True, or None, default None
            Specify the columns that we want to create to allow indexing on.

            * True : Use all available columns.
            * None : Use no columns.
            * List[str] : Use the specified columns.

        min_itemsize: Dict[str, int] or None, default None
            The min itemsize for a column in bytes.
        z/cannot properly create the storer for: [group->r  r&  Nr   c                   s   g | ]}  |qS rQ   )_get_axis_numberr}  )r  rQ   rR   rf     r   z&Table._create_axes.<locals>.<listcomp>Tc                 S  s   g | ]
}|j qS rQ   rP  r}  rQ   rQ   rR   rf     r   Fr_  r`   z<currently only support ndim-1 indexers in an AppendableTablenanc                   s   g | ]}| vr|qS rQ   rQ   r'  )rH  rQ   rR   rf   *  r   r  r  r   rV  zIncompatible appended table [z]with existing table [Zvalues_block_)existing_colr   r   rW   r   r   r  r	  rD  )r[   r  r]  r  r  rj  r  rc  r   r  r  r  c                 S  s   g | ]}|j r|jqS rQ   )r  r[   )rb   r  rQ   rQ   rR   rf     r   )
r   r   rW   r   r  r*  r  r   r  r   r  )CrL   r1   r   r   r   r   r  r  rg   r   r   r  rV  ri   r   rH  r*  r0   rM   arrayrZ  r   r  r   r   _get_axis_namer  rW   r   r.  r  r  r  _reindex_axisr	  r  r0  _get_blocks_and_itemsr  r  r7  r  rU  rY   
IndexErrorr   _maybe_convert_for_string_atomr]  r  r`  r%  r  r  r[   rp  r  r  r'   rc  rC  rI  r  r   r  r  r  rq  )/r   rH  r  rq  r   r   r   r   table_existsZnew_infonew_non_index_axesr  r~   Zappend_axisindexerZ
exist_axisr  	axis_name	new_indexZnew_index_axesjr  r  r  r  Zvaxesr  r  b_itemsr  r[   r  rG  new_namedata_convertedr  r  rj  r  r   r  rc  r  r  r  Zdcs	new_tablerQ   )rH  r  rR   _create_axes  s    








"






zTable._create_axes)r  r  c                 C  s|  t | jtr| d} dd }| j}tt|}t|j}||}t|r|d \}	}
t	|

t	|}| j||	dj}t|j}||}|D ]0}| j|g|	dj}||j ||| q|rtdd t||D }g }g }|D ]}t|j}z&||\}}|| || W q ttfyh } z2dd	d
 |D }td| d|W Y d }~qd }~0 0 q|}|}||fS )Nr  c                   s    fdd j D S )Nc                   s   g | ]} j |jqS rQ   )r   r\  r  )rb   r  mgrrQ   rR   rf     r   zFTable._get_blocks_and_items.<locals>.get_blk_items.<locals>.<listcomp>)r  r  rQ   r  rR   get_blk_items  s    z2Table._get_blocks_and_items.<locals>.get_blk_itemsr   rP  c                 S  s"   i | ]\}}t | ||fqS rQ   )rh   tolist)rb   br  rQ   rQ   rR   rS    s   z/Table._get_blocks_and_items.<locals>.<dictcomp>r  c                 S  s   g | ]}t |qS rQ   rf  )rb   itemrQ   rQ   rR   rf      r   z/Table._get_blocks_and_items.<locals>.<listcomp>z+cannot match existing table structure for [z] on appending data)rL   r  rB   r  r   rC   rg   r  ri   r3   rY  rb  rX  r7  rh   r]  ra  r   r  r   r  r   )r  r  r  r  r   r   r  r  r  r.  r  
new_labelsr  Zby_items
new_blocksZnew_blk_itemsear   r"  r  rG  ZjitemsrQ   rQ   rR   r    sN    






zTable._get_blocks_and_itemsr   )r  r   c           
        s   |durt |}|durNjrNtjt s.J jD ]}||vr4|d| q4jD ]\}}t ||| qT|jdur|j D ]$\}} fdd}	|	|| q S )zprocess axes filtersNr   c                   s    j D ]} |} |}|d us*J | |krfjrH|tj}||} j|d|   S | |v rtt	 | j
}t|}t trd| }||} j|d|   S qtd|  dd S )NrP  r`   zcannot find the field [z] for filtering!)_AXIS_ORDERSr
  	_get_axisr  unionr3   r  r`  rA   rp  r]  rL   r1   r   )fieldfiltr  axis_numberZaxis_valuesZtakersr]  r  opr   rQ   rR   process_filter  s"    





z*Table.process_axes.<locals>.process_filter)	rg   r  rL   r  insertr*  r  filterr   )
r   r  r  r   r   r.  labelsr*  r+  r/  rQ   r-  rR   process_axes
  s    

!zTable.process_axes)r   r   rI  r   c                 C  s   |du rt | jd}d|d}dd | jD |d< |rj|du rH| jpFd}t j|||pZ| jd	}||d
< n| jdur~| j|d
< |S )z:create the description of the table from the axes & valuesNi'  rp   )r[   rI  c                 S  s   i | ]}|j |jqS rQ   )r  r  r}  rQ   rQ   rR   rS  S  r   z,Table.create_description.<locals>.<dictcomp>r  	   )r   r   r   r   )maxr  rH  r   r}   r  r   r   )r   r   r   r   rI  rK  r   rQ   rQ   rR   create_descriptionD  s     	




zTable.create_descriptionrt  c           
      C  s   |  | |  sdS t| |||d}| }|jdur|j D ]D\}}}| j|| | d d}	|||	j	||   |j
 }qBt|S )zf
        select coordinates (row numbers) from a table; return the
        coordinates object
        Fr  Nr`   rt  )rs  r  r   select_coordsr1  r   r"  r  r5  ilocr]  r3   )
r   rj   r   r   r  coordsr*  r.  r+  r  rQ   rQ   rR   r  c  s    

 zTable.read_coordinatesr!  c                 C  s   |    |  sdS |dur$td| jD ]z}||jkr*|jsNtd| dt| jj	|}|
| j |j||| | j| j| jd}tt|d |j|d  S q*td| d	dS )
zj
        return a single column from the table, generally only indexables
        are interesting
        FNz4read_column does not currently accept a where clausezcolumn [z=] can not be extracted individually; it is not data indexablerF  r`   rZ   z] not found in the table)rs  r  r   rH  r[   r  r   rp  rp   rN  r  r  r  r   rW   r   r6   r  r  r   )r   r   rj   r   r   r~   r  Z
col_valuesrQ   rQ   rR   r"  }  s*    



zTable.read_column)Nrw   NNNNNN)N)NNN)NN)TNNN)N)NNN)NNN)4r   r  r  r  rZ  r[  r  r  r8  r   r  r  r   r   rq  r  r  r  r  rp  rp   r  r  rH  r  r  r  r  r  r  r  r  r
  rn  ro  rs  r  r#   r  rk  r  rS  r  r	  r  staticmethodr  r3  r6  r  r"  rT  rQ   rQ   r  rR   r     s   
        "




	
L W "*     k>:     r   c                   @  s4   e Zd ZdZdZddddddZdd	d
dZdS )r  z
    a write-once read-many table: this format DOES NOT ALLOW appending to a
    table. writing is a one-time operation the data are stored in a format
    that allows for searching the data on disk
    r  Nr   rt  c                 C  s   t ddS )z[
        read the indices and the indexing array, calculate offset rows and return
        z!WORMTable needs to implement readNru  rv  rQ   rQ   rR   r    s    
zWORMTable.readr   r   c                 K  s   t ddS )z
        write in a format that we can search later on (but cannot append
        to): write out the indices and the values using _write_array
        (e.g. a CArray) create an indexing table so that we can search
        z"WORMTable needs to implement writeNru  rw  rQ   rQ   rR   r    s    zWORMTable.write)NNNN)r   r  r  r  r  r  r  rQ   rQ   rQ   rR   r    s       r  c                   @  sd   e Zd ZdZdZdddddd	d
ZdddddddZddddddddZddddddZdS )r  (support the new appendable table formatsZ
appendableNFTr   r   )r   r   r   c                 C  s   |s| j r| j| jd | j||||||d}|jD ]}|  q6|j s|j||||	d}|  ||d< |jj	|jfi | |j
|j_
|jD ]}||| q|j||
d d S )Nrp   )rH  r  rq  r   r   r   )r   r   r   rI  r<  )r   )r  r   r  r   r  rH  r  r6  rn  Zcreate_tabler  r  r  
write_data)r   r  rH  r   r   r   r   r   r   rI  r   r   r   r<  rp   r~   optionsrQ   rQ   rR   r    s4    
	



zAppendableTable.writer   )r   r   r   c                   s  | j j}| j}g }|rT| jD ]6}t|jjdd}t|tj	r|
|jddd qt|r|d }|dd D ]}||@ }qp| }nd}dd	 | jD }	t|	}
|
dksJ |
d
d	 | jD }dd	 |D }g }t|D ]6\}}|f| j ||
|   j }|
|| | q|du r$d}tjt||| j d}|| d }t|D ]x}|| t|d | |  kr| q| j| fdd	|	D |dur|  nd fdd	|D d qNdS )z`
        we form the data into a 2-d including indexes,values,mask write chunk-by-chunk
        r   rP  u1FrD  r`   Nc                 S  s   g | ]
}|j qS rQ   )r  r}  rQ   rQ   rR   rf   $  r   z.AppendableTable.write_data.<locals>.<listcomp>c                 S  s   g | ]}|  qS rQ   )r  r}  rQ   rQ   rR   rf   *  r   c              	   S  s,   g | ]$}| tt|j|jd  qS r  )	transposerM   rollr  rV  r?  rQ   rQ   rR   rf   +  r   r  r<  c                   s   g | ]}|  qS rQ   rQ   r}  end_istart_irQ   rR   rf   ?  r   c                   s   g | ]}|  qS rQ   rQ   r?  rA  rQ   rR   rf   A  r   )indexesrR  r]  )r  r  r  r  r9   r  rL  rL   rM   r  r   rL  ri   rI  r  r  r  reshaper  r  rU  write_data_chunk)r   r   r   r  r  masksr~   rR  mrD  nindexesr]  bvaluesr  rR  	new_shaperowschunksrQ   rA  rR   r<  	  sL    




zAppendableTable.write_datar  zlist[np.ndarray]znpt.NDArray[np.bool_] | None)rL  rD  rR  r]  r   c                 C  s   |D ]}t |js dS q|d jd }|t|krFt j|| jd}| jj}t|}t|D ]\}	}
|
|||	 < q^t|D ]\}	}||||	|  < q||dur| j	t
dd }| s|| }t|r| j| | j  dS )z
        Parameters
        ----------
        rows : an empty memory space where we are putting the chunk
        indexes : an array of the indexes
        mask : an array of the masks
        values : an array of the values
        Nr   r<  FrD  )rM   r  r  ri   r  r  r  r  rI  rL  r   rL  rp   r   r  )r   rL  rD  rR  r]  rR  r  r  rI  r  r  rH  rQ   rQ   rR   rF  D  s&    z AppendableTable.write_data_chunkrt  c                 C  sb  |d u st |sf|d u r:|d u r:| j}| jj| jdd n(|d u rH| j}| jj||d}| j  |S |  srd S | j}t	| |||d}|
 }t| }t |}	|	r^| }
t|
|
dk j}t |sdg}|d |	kr||	 |d dkr|dd | }t|D ]@}|t||}|j||jd  ||jd  d d |}q| j  |	S )NTr@  rt  r`   r   rB  )ri   r  r   r  r   rp   Zremove_rowsr  r  r   r7  r6   sort_valuesdiffrg   r   r   r0  ra  reversedr\  rU  )r   rj   r   r   r  rp   r  r]  Zsorted_serieslnrO  r   pgr   rL  rQ   rQ   rR   rF  p  sD    


zAppendableTable.delete)NFNNNNNNFNNT)F)NNN)	r   r  r  r  r  r  r<  rF  rF  rQ   rQ   rQ   rR   r    s$               <;,r  c                   @  s`   e Zd ZU dZdZdZdZeZde	d< e
ddd	d
ZeddddZddddddZdS )r  r;  r  r  r_  r\  r]  r   r   c                 C  s   | j d jdkS )Nr   r`   )r  r.  r   rQ   rQ   rR   r    s    z"AppendableFrameTable.is_transposedr  c                 C  s   |r
|j }|S )zthese are written transposed)r  r  rQ   rQ   rR   r    s    zAppendableFrameTable.get_objectNr   rt  c                   s0    |   sd S  j|||d}t jrH j jd d i ni } fddt jD }t|dkstJ |d }|| d }	g }
t jD ]N\}}| j	vrq|| \}}|ddkrt
|}n
t|}|d}|d ur|j|d	d
  jr |}|}t
|	t|	dd d}n|j}t
|	t|	dd d}|}|jdkrlt|tjrl|d|jd f}t|tjrt|j||d}n.t|t
rt|||d}ntj|g||d}|j|jk sJ |j|jf|
| qt|
dkr |
d }nt|
dd}t |||d} j|||d}|S )Nr  r   c                   s"   g | ]\}}| j d  u r|qS r)  r  )rb   r  r  r   rQ   rR   rf     r   z-AppendableFrameTable.read.<locals>.<listcomp>r`   r   r4   r  Tinplacer[   rZ   r  rP  )r  r   ) rs  r  r  ri   r*  r  r   r  rH  r  r3   r4   from_tuples	set_namesr  rp  r  rV  rL   rM   r  rE  r  r1   _from_arraysdtypesr  rL  r   r8   r   r3  )r   rj   r   r   r   r  r  indsindr   framesr  r~   Z
index_valsr  rN  r  r]  Zindex_Zcols_r  r  rQ   r   rR   r    sZ    	




"
zAppendableFrameTable.read)NNNN)r   r  r  r  rZ  r  rV  r1   r]  r  r  r  rS  r  r  rQ   rQ   rQ   rR   r    s   
    r  c                      sn   e Zd ZdZdZdZdZeZe	ddddZ
edd	d
dZd fdd	Zddddd fddZ  ZS )r  r;  r  r  r_  r   r   c                 C  s   dS r  rQ   r   rQ   rQ   rR   r    s    z#AppendableSeriesTable.is_transposedr  c                 C  s   |S rT   rQ   r  rQ   rQ   rR   r    s    z AppendableSeriesTable.get_objectNc                   s<   t |ts|jpd}||}t jf ||j d|S )+we are going to write this as a frame tabler]  r  r   )rL   r1   r[   to_framer  r  r   r!  )r   r  r   r   r[   r  rQ   rR   r  !  s    


zAppendableSeriesTable.writer   r6   rx  c                   s   | j }|d urB|rBt| jts"J | jD ]}||vr(|d| q(t j||||d}|rj|j| jdd |jd d df }|j	dkrd |_	|S )Nr   r-  TrS  r]  )
r  rL   r  rg   r0  r  r  	set_indexr8  r[   )r   rj   r   r   r   r  r   rP   r  rQ   rR   r  (  s    

zAppendableSeriesTable.read)N)NNNN)r   r  r  r  rZ  r  rV  r6   r]  r  r  rS  r  r  r  rT  rQ   rQ   r  rR   r    s   	    r  c                      s(   e Zd ZdZdZdZ fddZ  ZS )r  r;  r  r  c                   s^   |j pd}| |\}| _t| jts*J t| j}|| t||_t j	f d|i|S )r\  r]  r  )
r[   r  r  rL   rg   r   r3   r   r  r  )r   r  r   r[   newobjrN  r  rQ   rR   r  H  s    



z AppendableMultiSeriesTable.write)r   r  r  r  rZ  r  r  rT  rQ   rQ   r  rR   r  B  s   r  c                   @  sj   e Zd ZU dZdZdZdZeZde	d< e
ddd	d
Ze
dd ZddddZedd Zdd ZdS )r  z:a table that read/writes the generic pytables table formatr  r  r_  zlist[Hashable]r  rY   r   c                 C  s   | j S rT   )rZ  r   rQ   rQ   rR   rm  \  s    zGenericTable.pandas_typec                 C  s   t | jdd p| jS r  r  r   rQ   rQ   rR   rp  `  s    zGenericTable.storabler   c                 C  sL   g | _ d| _g | _dd | jD | _dd | jD | _dd | jD | _dS )r  Nc                 S  s   g | ]}|j r|qS rQ   r  r}  rQ   rQ   rR   rf   j  r   z*GenericTable.get_attrs.<locals>.<listcomp>c                 S  s   g | ]}|j s|qS rQ   r  r}  rQ   rQ   rR   rf   k  r   c                 S  s   g | ]
}|j qS rQ   rZ   r}  rQ   rQ   rR   rf   l  r   )r*  r   r  r  r  r  r   r   rQ   rQ   rR   ro  d  s    zGenericTable.get_attrsc           
   
   C  s   | j }| d}|durdnd}tdd| j||d}|g}t|jD ]^\}}t|tsZJ t||}| |}|durzdnd}t	|||g|| j||d}	|
|	 qD|S )z0create the indexables from the table descriptionr   Nr	  r   )r[   r.  rp   r   r  )r[   r  r]  r  rp   r   r  )r  r
  r  rp   r  Z_v_namesrL   rY   rp  rX  r   )
r   rK  r  r   r  r  r  r   r$  re  rQ   rQ   rR   r  n  s.    


	zGenericTable.indexablesc                 K  s   t dd S )Nz cannot write on an generic tableru  rw  rQ   rQ   rR   r    s    zGenericTable.writeN)r   r  r  r  rZ  r  rV  r1   r]  r  r  rm  rp  ro  r#   r  r  rQ   rQ   rQ   rR   r  S  s   



"r  c                      s`   e Zd ZdZdZeZdZe	dZ
eddddZd fd
d	Zdddd fddZ  ZS )r  za frame with a multi-indexr  r_  z^level_\d+$rY   r   c                 C  s   dS )NZappendable_multirQ   r   rQ   rQ   rR   r    s    z*AppendableMultiFrameTable.table_type_shortNc                   sx   |d u rg }n|du r |j  }| |\}| _t| jts@J | jD ]}||vrF|d| qFt jf ||d|S )NTr   r]  )	r   r!  r  r  rL   rg   r0  r  r  )r   r  r   r   r   r  rQ   rR   r    s    

zAppendableMultiFrameTable.writer   rt  c                   sD   t  j||||d}| j}|j fdd|jjD |_|S )Nr-  c                   s    g | ]} j |rd n|qS rT   )
_re_levelssearch)rb   r[   r   rQ   rR   rf     r   z2AppendableMultiFrameTable.read.<locals>.<listcomp>)r  r  r_  r  r   rV  r  )r   rj   r   r   r   r  r  r   rR   r    s    zAppendableMultiFrameTable.read)N)NNNN)r   r  r  r  r  r1   r]  rV  recompilera  r  r  r  r  rT  rQ   rQ   r  rR   r    s   
    r  r1   r3   )r  r.  r2  r   c                 C  s   |  |}t|}|d ur"t|}|d u s4||rB||rB| S t| }|d urlt| j|dd}||std d g| j }|||< | jt| } | S )NF)sort)	r(  rA   equalsuniquer_  slicerV  r`  rh   )r  r.  r2  r  r  slicerrQ   rQ   rR   r    s    

r  r   zstr | tzinfo)r  r   c                 C  s   t | }|S )z+for a tz-aware type, return an encoded zone)r   get_timezone)r  zonerQ   rQ   rR   r    s    
r  znp.ndarray | Indexr2   )r]  r  r9  r   c                 C  s   d S rT   rQ   r]  r  r9  rQ   rQ   rR   r    s    r  r  c                 C  s   d S rT   rQ   rl  rQ   rQ   rR   r    s    zstr | tzinfo | Noneznp.ndarray | DatetimeIndexc                 C  s   t | tr"| jdu s"| j|ks"J |durtt | trB| j}| j} nd}|  } t|}t| |d} | d|} n|rt	j
| dd} | S )a  
    coerce the values to a DatetimeIndex if tz is set
    preserve the input shape if possible

    Parameters
    ----------
    values : ndarray or Index
    tz : str or tzinfo
    coerce : if we do not have a passed timezone, coerce to M8[ns] ndarray
    NrZ   r  M8[ns]r<  )rL   r2   r  r[   r  rI  rS   r  r  rM   rG  )r]  r  r9  r[   rQ   rQ   rR   r    s    

)r[   r   rW   r   r   c              
   C  s~  t | tsJ |j}t|\}}t|}t|}t |tsPt|j	sPt
|j	rvt| |||t|dd t|dd |dS t |trtdtj|dd}	t|}
|	dkrtjdd	 |
D tjd
}t| |dt  |dS |	dkrt|
||}|j	j}t| |dt ||dS |	dv r.t| ||||dS t |tjrH|j	tksLJ |dks^J |t  }t| ||||dS d S )Nr  r  )r]  rj  r  r  r  r  zMultiIndex not supported here!Fr  r   c                 S  s   g | ]}|  qS rQ   )	toordinalr?  rQ   rQ   rR   rf   6  r   z"_convert_index.<locals>.<listcomp>r<  )r  r  )integerfloating)r]  rj  r  r  rH  )rL   rY   r[   r  r  rU  r%  r:   r/   r  r&   r  rp  r4   r   r   r  rM   rG  int32r}   Z	Time32Col_convert_string_arrayr  r  r  rH  r  )r[   r   rW   r   r  rQ  r  rj  r$  r  r]  r  rQ   rQ   rR   r    s^    










r  )rj  rW   r   r   c                 C  s   |dkrt | }n|dkr$t| }n|dkrvztjdd | D td}W q tyr   tjdd | D td}Y q0 nT|dv rt| }n@|d	v rt| d ||d
}n&|dkrt| d }ntd| |S )Nr7  r:  r   c                 S  s   g | ]}t |qS rQ   r=  r?  rQ   rQ   rR   rf   Z  r   z$_unconvert_index.<locals>.<listcomp>r<  c                 S  s   g | ]}t |qS rQ   r@  r?  rQ   rQ   rR   rf   \  r   )ro  floatr   r  rF  rH  r   zunrecognized index type )r2   r7   rM   rG  rH  r   rP  )r  rj  rW   r   r   rQ   rQ   rR   r  Q  s&    

 r  r   r   )r[   rJ  r   c                 C  s  |j tkr|S ttj|}|j j}tj|dd}	|	dkrBtdn&|	dkrTtdn|	dksh|dksh|S t	|}
|
 }|||
< tj|dd}	|	dkrt|jd	 D ]V}|| }tj|dd}	|	dkrt||kr|| nd
| }td| d|	 dqt||||j}|j}t|trBt|| p>|dp>d	}t|pLd	|}|d ur~||}|d ur~||kr~|}|jd| dd}|S )NFr  r   z+[date] is not implemented as a table columnrz  z>too many timezones in this block, create separate data columnsr  rH  r   zNo.zCannot serialize the column [z2]
because its data contents are not [string] but [z] object dtyper]  z|SrD  )r  rH  r   rM   r  r[   r   r  r   r9   r  rU  r  ri   rr  rE  r  rL   rJ  r]   r   r5  r  rL  )r[   rJ  r  r   r   rW   r   r   r  r  rR  r  r  r  Zerror_column_labelr  r  ZecirQ   rQ   rR   r  j  sN    

 

r  )r  rW   r   r   c                 C  s\   t | r(t|  j||j| j} t|  }t	dt
|}tj| d| d} | S )a  
    Take a string-like that is object dtype and coerce to a fixed size string type.

    Parameters
    ----------
    data : np.ndarray[object]
    encoding : str
    errors : str
        Handler for encoding errors.

    Returns
    -------
    np.ndarray[fixed-length-string]
    r`   Sr<  )ri   r6   rI  rY   encoderN  rE  r  r%   r5  
libwritersmax_len_string_arrayrM   rG  )r  rW   r   Zensuredr  rQ   rQ   rR   rr    s    rr  c                 C  s   | j }tj|  td} t| rvtt| }d| }t	| d t
r^t| jj||dj} n| j|ddjtdd} |du rd}t| | | |S )	a*  
    Inverse of _convert_string_array.

    Parameters
    ----------
    data : np.ndarray[fixed-length-string]
    nan_rep : the storage repr of NaN
    encoding : str
    errors : str
        Handler for encoding errors.

    Returns
    -------
    np.ndarray[object]
        Decoded data.
    r<  Ur   )r   FrD  Nr  )r  rM   rG  rI  rH  ri   rv  rw  r%   rL   r  r6   rY   rO   rN  rL  !string_array_replace_from_nan_reprE  )r  r   rW   r   r  r  r  rQ   rQ   rR   rP    s    
rP  )r]  r  rW   r   c                 C  s6   t |tsJ t|t|r2t|||}|| } | S rT   )rL   rY   r   _need_convert_get_converter)r]  r  rW   r   convrQ   rQ   rR   r    s
    r  rj  rW   r   c                   s8   | dkrdd S | dkr& fddS t d|  d S )Nr7  c                 S  s   t j| ddS )Nrm  r<  )rM   rG  r(  rQ   rQ   rR   r     r   z _get_converter.<locals>.<lambda>r  c                   s   t | d  dS )NrF  )rP  r~  r  rQ   rR   r     s   zinvalid kind )r   r}  rQ   r  rR   r{    s
    r{  r(  c                 C  s   | dv rdS dS )N)r7  r  TFrQ   r  rQ   rQ   rR   rz    s    rz  zSequence[int])r[   r`  r   c                 C  sl   t |tst|dk rtd|d dkrh|d dkrh|d dkrhtd| }|rh| d }d| } | S )	z
    Prior to 0.10.1, we named values blocks like: values_block_0 an the
    name values_0, adjust the given name if necessary.

    Parameters
    ----------
    name : str
    version : Tuple[int, int, int]

    Returns
    -------
    str
       z6Version is incorrect, expected sequence of 3 integers.r   r`   r^  r_  zvalues_block_(\d+)Zvalues_)rL   rY   ri   r   rc  rb  r   )r[   r`  rH  grprQ   rQ   rR   r    s    $
r  )	dtype_strr   c                 C  s   t | } | ds| dr"d}n| dr2d}n| drBd}n| dsV| dr\d}nn| drld}n^| d	r|d
}nN| drd}n>| drd}n.| drd}n| dkrd}ntd|  d|S )zA
    Find the "kind" string describing the given dtype name.
    r  r  rs  r  r]   r)  ro  r7  	timedeltar:  r   r	  r,  rH  zcannot interpret dtype of [r&  )rS   rx  r   )r  rj  rQ   rQ   rR   r  -  s.    






r  r  c                 C  sb   t | tr| j} | jjdd }| jjdv r@t| 	d} nt | t
rP| j} t| } | |fS )zJ
    Convert the passed data into a storable form and a dtype string.
    rg  r   )rH  Mr  )rL   r;   r  r  r[   r  rj  rM   rG  r  r5   r  )r  r  rQ   rQ   rR   r  N  s    


r  c                   @  s>   e Zd ZdZddddddddZd	d
 Zdd Zdd ZdS )r   z
    Carries out a selection operation on a tables.Table object.

    Parameters
    ----------
    table : a Table object
    where : list of Terms (or convertible to)
    start, stop: indices to start and/or stop selection

    Nr   r   r   )rp   r   r   r   c                 C  sh  || _ || _|| _|| _d | _d | _d | _d | _t|r.t	t
 tj|dd}|dksd|dkrt|}|jtjkr| j| j }}|d u rd}|d u r| j j}t||| | _nVt|jjtjr| jd ur|| jk  s | jd ur|| jk rt
d|| _W d    n1 s$0    Y  | jd u rd| || _| jd urd| j \| _| _d S )NFr  ro  booleanr   z3where must have index locations >= start and < stop)rp   rj   r   r   	conditionr1  termsr4  r,   r   r   r   r  rM   rG  r  bool_r  r  
issubclassr   ro  rK  generateevaluate)r   rp   rj   r   r   inferredrQ   rQ   rR   r   p  sD    


&zSelection.__init__c              
   C  s   |du rdS | j  }zt||| j jdW S  ty| } z:d| }td| d| d}t||W Y d}~n
d}~0 0 dS )z'where can be a : dict,list,tuple,stringN)r  rW   r  z-                The passed where expression: a*  
                            contains an invalid variable reference
                            all of the variable references must be a reference to
                            an axis (e.g. 'index' or 'columns'), or a data_column
                            The currently defined references are: z
                )	rp   r  r>   rW   	NameErrorr  r   r   r   )r   rj   r  rG  Zqkeysr  rQ   rQ   rR   r    s    
	zSelection.generatec                 C  sX   | j dur(| jjj| j  | j| jdS | jdurB| jj| jS | jjj| j| jdS )(
        generate the selection
        Nrt  )	r  rp   Z
read_wherer   r   r   r4  r  r  r   rQ   rQ   rR   r     s    

zSelection.selectc                 C  s   | j | j }}| jj}|du r$d}n|dk r4||7 }|du rB|}n|dk rR||7 }| jdurx| jjj| j ||ddS | jdur| jS t	||S )r  Nr   T)r   r   re  )
r   r   rp   r  r  Zget_where_listr   r4  rM   r  )r   r   r   r  rQ   rQ   rR   r7    s"    

zSelection.select_coords)NNN)r   r  r  r  r   r  r   r7  rQ   rQ   rQ   rR   r   d  s      /r   )r~   NNFNTNNNNrw   rK   )	Nr   rw   NNNNFN)N)F)F)F)r  
__future__r   
contextlibr   r  rz  r   r   r5  r   rc  textwrapr   typingr   r   r	   r
   r   r   r   r   r   r   r   numpyrM   pandas._configr   r   pandas._libsr   r   rv  pandas._libs.tslibsr   pandas._typingr   r   r   r   r   r   pandas.compat._optionalr   Zpandas.compat.pickle_compatr   pandas.errorsr   r   r    r!   r"   pandas.util._decoratorsr#   pandas.util._exceptionsr$   pandas.core.dtypes.commonr%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   pandas.core.dtypes.missingr0   r   r1   r2   r3   r4   r5   r6   r7   r8   r9   pandas.core.apir:   pandas.core.arraysr;   r<   r=   pandas.core.commoncorecommonrD  Z pandas.core.computation.pytablesr>   r?   pandas.core.constructionr@   pandas.core.indexes.apirA   pandas.core.internalsrB   rC   pandas.io.commonrD   pandas.io.formats.printingrE   rF   ry   rG   rH   rI   rJ   rj  rU   rS   rX   r\   ra   rk   rl   r  rm   rn   r  rW  rs   rt   config_prefixregister_optionis_boolis_one_of_factoryrx   r|   r}   r   r   r   r   r  r  r  r  rU  rX  rY  ry  r  r  r  r   r  r  r  r  r  r  r  r  r  r  r  r  r  rr  rP  r  r{  rz  r  r  r  r   rQ   rQ   rQ   rR   <module>   s.  0 4,
&            ,:                     _p  )!   3  e!`       o gd1B+  &AK'!