"""
Module for scope operations
"""
from __future__ import annotations

import datetime
import inspect
from io import StringIO
import itertools
import pprint
import struct
import sys

import numpy as np

from pandas._libs.tslibs import Timestamp
from pandas.compat.chainmap import DeepChainMap
from pandas.errors import UndefinedVariableError


def ensure_scope(
    level: int, global_dict=None, local_dict=None, resolvers=(), target=None, **kwargs
) -> Scope:
    """Ensure that we are grabbing the correct scope."""
    return Scope(
        level + 1,
        global_dict=global_dict,
        local_dict=local_dict,
        resolvers=resolvers,
        target=target,
    )


def _replacer(x) -> str:
    """
    Replace a number with its hexadecimal representation. Used to tag
    temporary variables with their calling scope's id.
    """
    # get the hex repr of the binary char and remove 0x and pad by pad_size
    # zeros
    try:
        hexin = ord(x)
    except TypeError:
        # bytes literals masquerade as ints when iterating in py3
        hexin = x

    return hex(hexin)


def _raw_hex_id(obj) -> str:
    """Return the padded hexadecimal id of ``obj``."""
    # interpret as a pointer since that's what really what id returns
    packed = struct.pack("@P", id(obj))
    return "".join([_replacer(x) for x in packed])


DEFAULT_GLOBALS = {
    "Timestamp": Timestamp,
    "datetime": datetime.datetime,
    "True": True,
    "False": False,
    "list": list,
    "tuple": tuple,
    "inf": np.inf,
    "Inf": np.inf,
}


def _get_pretty_string(obj) -> str:
    """
    Return a prettier version of obj.

    Parameters
    ----------
    obj : object
        Object to pretty print

    Returns
    -------
    str
        Pretty print object repr
    """
    sio = StringIO()
    pprint.pprint(obj, stream=sio)
    return sio.getvalue()


class Scope:
    """
    Object to hold scope, with a few bells to deal with some custom syntax
    and contexts added by pandas.

    Parameters
    ----------
    level : int
    global_dict : dict or None, optional, default None
    local_dict : dict or Scope or None, optional, default None
    resolvers : list-like or None, optional, default None
    target : object

    Attributes
    ----------
    level : int
    scope : DeepChainMap
    target : object
    temps : dict
    """

    __slots__ = ["level", "scope", "target", "resolvers", "temps"]
    level: int
    scope: DeepChainMap
    resolvers: DeepChainMap
    temps: dict

    def __init__(
        self, level: int, global_dict=None, local_dict=None, resolvers=(), target=None
    ) -> None:
        self.level = level + 1

        # shallow copy because we don't want to keep filling this up with what
        # was there before if there are multiple calls to Scope/_ensure_scope
        self.scope = DeepChainMap(DEFAULT_GLOBALS.copy())
        self.target = target

        if isinstance(local_dict, Scope):
            self.scope.update(local_dict.scope)
            if local_dict.target is not None:
                self.target = local_dict.target
            self._update(local_dict.level)

        frame = sys._getframe(self.level)

        try:
            # shallow copy here because we don't want to replace what's in
            # scope when we align terms (alignment accesses the underlying
            # numpy array of pandas objects)
            scope_global = self.scope.new_child(
                (global_dict if global_dict is not None else frame.f_globals).copy()
            )
            self.scope = DeepChainMap(scope_global)
            if not isinstance(local_dict, Scope):
                scope_local = self.scope.new_child(
                    (local_dict if local_dict is not None else frame.f_locals).copy()
                )
                self.scope = DeepChainMap(scope_local)
        finally:
            del frame

        # assumes that resolvers are going from outermost scope to inner
        if isinstance(local_dict, Scope):
            resolvers += tuple(local_dict.resolvers.maps)
        self.resolvers = DeepChainMap(*resolvers)
        self.temps = {}

    def __repr__(self) -> str:
        scope_keys = _get_pretty_string(list(self.scope.keys()))
        res_keys = _get_pretty_string(list(self.resolvers.keys()))
        return f"{type(self).__name__}(scope={scope_keys}, resolvers={res_keys})"

    @property
    def has_resolvers(self) -> bool:
        """
        Return whether we have any extra scope.

        For example, DataFrames pass Their columns as resolvers during calls to
        ``DataFrame.eval()`` and ``DataFrame.query()``.

        Returns
        -------
        hr : bool
        """
        return bool(len(self.resolvers))

    def resolve(self, key: str, is_local: bool):
        """
        Resolve a variable name in a possibly local context.

        Parameters
        ----------
        key : str
            A variable name
        is_local : bool
            Flag indicating whether the variable is local or not (prefixed with
            the '@' symbol)

        Returns
        -------
        value : object
            The value of a particular variable
        """
        try:
            # only look for locals in outer scope
            if is_local:
                return self.scope[key]

            # not a local variable so check in resolvers if we have them
            if self.has_resolvers:
                return self.resolvers[key]

            # if we're here that means that we have no locals and we also have
            # no resolvers
            assert not is_local and not self.has_resolvers
            return self.scope[key]
        except KeyError:
            try:
                # last ditch effort we look in temporaries
                # these are created when parsing indexing expressions
                # e.g., df[df > 0]
                return self.temps[key]
            except KeyError as err:
                raise UndefinedVariableError(key, is_local) from err

    def swapkey(self, old_key: str, new_key: str, new_value=None) -> None:
        """
        Replace a variable name, with a potentially new value.

        Parameters
        ----------
        old_key : str
            Current variable name to replace
        new_key : str
            New variable name to replace `old_key` with
        new_value : object
            Value to be replaced along with the possible renaming
        """
        if self.has_resolvers:
            maps = self.resolvers.maps + self.scope.maps
        else:
            maps = self.scope.maps

        maps.append(self.temps)

        for mapping in maps:
            if old_key in mapping:
                mapping[new_key] = new_value
                return

    def _get_vars(self, stack, scopes: list[str]) -> None:
        """
        Get specifically scoped variables from a list of stack frames.

        Parameters
        ----------
        stack : list
            A list of stack frames as returned by ``inspect.stack()``
        scopes : sequence of strings
            A sequence containing valid stack frame attribute names that
            evaluate to a dictionary. For example, ('locals', 'globals')
        """
        variables = itertools.product(scopes, stack)
        for scope, (frame, _, _, _, _, _) in variables:
            try:
                d = getattr(frame, "f_" + scope)
                self.scope = DeepChainMap(self.scope.new_child(d))
            finally:
                # won't remove it, but DECREF it
                # in Py3 this probably isn't necessary since frame won't be
                # scope after the loop
                del frame

    def _update(self, level: int) -> None:
        """
        Update the current scope by going back `level` levels.

        Parameters
        ----------
        level : int
        """
        sl = level + 1

        # add sl frames to the scope starting with the
        # most distant and overwriting with more current
        # makes sure that we can capture variable scope
        stack = inspect.stack()

        try:
            self._get_vars(stack[:sl], scopes=["locals"])
        finally:
            del stack[:], stack

    def add_tmp(self, value) -> str:
        """
        Add a temporary variable to the scope.

        Parameters
        ----------
        value : object
            An arbitrary object to be assigned to a temporary variable.

        Returns
        -------
        str
            The name of the temporary variable created.
        """
        name = f"{type(value).__name__}_{self.ntemps}_{_raw_hex_id(self)}"

        # add to inner most scope
        assert name not in self.temps
        self.temps[name] = value
        assert name in self.temps

        # only increment if the variable gets put in the scope
        return name

    @property
    def ntemps(self) -> int:
        """The number of temporary variables in this scope"""
        return len(self.temps)

    @property
    def full_scope(self) -> DeepChainMap:
        """
        Return the full scope for use with passing to engines transparently
        as a mapping.

        Returns
        -------
        vars : DeepChainMap
            All variables in this scope.
        """
        # error: Unsupported operand types for + ("List[Dict[Any, Any]]" and
        # "List[Mapping[Any, Any]]")
        # error: Unsupported operand types for + ("List[Dict[Any, Any]]" and
        # "List[Mapping[str, Any]]")
        maps = (
            [self.temps]
            + self.resolvers.maps  # type: ignore[operator]
            + self.scope.maps  # type: ignore[operator]
        )
        return DeepChainMap(*maps)
