a
    Sicd                     @   s  d Z ddlZddlZddlZddlZddlmZmZ ddl	m
Z
mZmZmZmZmZmZmZmZmZmZ ddlmZmZ G dd dZG dd	 d	eZG d
d deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd deZ G dd deZ!G dd deZ"G dd deZ#G dd deZ$G d d! d!eZ%G d"d# d#eZ&G d$d% d%eZ'G d&d' d'eZ(eee"e%e(eed(Z)d)d* Z*d+d, Z+e+j re+j d-d.,e-e.e* i e+_ d/d0 Z/d1d2 Z0ej1j2d3d.,d4d5 e* D  e0 3 d6 dS )7a  
Scales define the distribution of data values on an axis, e.g. a log scaling.
They are defined as subclasses of `ScaleBase`.

See also `.axes.Axes.set_xscale` and the scales examples in the documentation.

See :doc:`/gallery/scales/custom_scale` for a full example of defining a custom
scale.

Matplotlib also supports non-separable transformations that operate on both
`~.axis.Axis` at the same time.  They are known as projections, and defined in
`matplotlib.projections`.
    N)_api
_docstring)NullFormatterScalarFormatterLogFormatterSciNotationLogitFormatterNullLocator
LogLocatorAutoLocatorAutoMinorLocatorSymmetricalLogLocatorAsinhLocatorLogitLocator)	TransformIdentityTransformc                   @   s0   e Zd ZdZdd Zdd Zdd Zdd	 Zd
S )	ScaleBasea  
    The base class for all scales.

    Scales are separable transformations, working on a single dimension.

    Subclasses should override

    :attr:`name`
        The scale's name.
    :meth:`get_transform`
        A method returning a `.Transform`, which converts data coordinates to
        scaled coordinates.  This transform should be invertible, so that e.g.
        mouse positions can be converted back to data coordinates.
    :meth:`set_default_locators_and_formatters`
        A method that sets default locators and formatters for an `~.axis.Axis`
        that uses this scale.
    :meth:`limit_range_for_scale`
        An optional method that "fixes" the axis range to acceptable values,
        e.g. restricting log-scaled axes to positive values.
    c                 C   s   dS )a  
        Construct a new scale.

        Notes
        -----
        The following note is for scale implementors.

        For back-compatibility reasons, scales take an `~matplotlib.axis.Axis`
        object as first argument.  However, this argument should not
        be used: a single scale object should be usable by multiple
        `~matplotlib.axis.Axis`\es at the same time.
        N selfaxisr   r   L/var/www/html/django/DPS/env/lib/python3.9/site-packages/matplotlib/scale.py__init__3   s    zScaleBase.__init__c                 C   s
   t  dS )zL
        Return the `.Transform` object associated with this scale.
        NNotImplementedErrorr   r   r   r   get_transformA   s    zScaleBase.get_transformc                 C   s
   t  dS )zi
        Set the locators and formatters of *axis* to instances suitable for
        this scale.
        Nr   r   r   r   r   #set_default_locators_and_formattersG   s    z-ScaleBase.set_default_locators_and_formattersc                 C   s   ||fS )z
        Return the range *vmin*, *vmax*, restricted to the
        domain supported by this scale (if any).

        *minpos* should be the minimum positive value in the data.
        This is used by log scales to determine a minimum value.
        r   r   vminvmaxZminposr   r   r   limit_range_for_scaleN   s    zScaleBase.limit_range_for_scaleN)__name__
__module____qualname____doc__r   r   r   r    r   r   r   r   r      s
   r   c                   @   s,   e Zd ZdZdZdd Zdd Zdd Zd	S )
LinearScalez#
    The default linear scale.
    linearc                 C   s   dS )z	
        Nr   r   r   r   r   r   `   s    zLinearScale.__init__c                 C   sj   | t  |t  |t  |jdkr8tjd sL|jdkrZtjd rZ|	t
  n|	t  d S Nxzxtick.minor.visibleyzytick.minor.visibleset_major_locatorr
   set_major_formatterr   set_minor_formatterr   	axis_namemplrcParamsset_minor_locatorr   r   r   r   r   r   r   g   s    z/LinearScale.set_default_locators_and_formattersc                 C   s   t  S )z
        Return the transform for linear scaling, which is just the
        `~matplotlib.transforms.IdentityTransform`.
        )r   r   r   r   r   r   s   s    zLinearScale.get_transformN)r!   r"   r#   r$   namer   r   r   r   r   r   r   r%   Y   s
   r%   c                       s8   e Zd ZdZd ZZ fddZdd Zdd Z  Z	S )	FuncTransformzi
    A simple transform that takes and arbitrary function for the
    forward and inverse transform.
       c                    s4   t    t|r(t|r(|| _|| _ntddS )a  
        Parameters
        ----------
        forward : callable
            The forward function for the transform.  This function must have
            an inverse and, for best behavior, be monotonic.
            It must have the signature::

               def forward(values: array-like) -> array-like

        inverse : callable
            The inverse of the forward function.  Signature as ``forward``.
        z,arguments to FuncTransform must be functionsN)superr   callable_forward_inverse
ValueError)r   forwardinverse	__class__r   r   r      s
    
zFuncTransform.__init__c                 C   s
   |  |S N)r7   )r   valuesr   r   r   transform_non_affine   s    z"FuncTransform.transform_non_affinec                 C   s   t | j| jS r>   )r3   r8   r7   r   r   r   r   inverted   s    zFuncTransform.inverted
r!   r"   r#   r$   
input_dimsoutput_dimsr   r@   rA   __classcell__r   r   r<   r   r3   {   s
   r3   c                   @   s,   e Zd ZdZdZdd Zdd Zdd Zd	S )
	FuncScalezN
    Provide an arbitrary scale with user-supplied function for the axis.
    functionc                 C   s   |\}}t ||}|| _dS )a  
        Parameters
        ----------
        axis : `~matplotlib.axis.Axis`
            The axis for the scale.
        functions : (callable, callable)
            two-tuple of the forward and inverse functions for the scale.
            The forward function must be monotonic.

            Both functions must have the signature::

               def forward(values: array-like) -> array-like
        N)r3   
_transform)r   r   	functionsr:   r;   	transformr   r   r   r      s    
zFuncScale.__init__c                 C   s   | j S )z7Return the `.FuncTransform` associated with this scale.rH   r   r   r   r   r      s    zFuncScale.get_transformc                 C   sj   | t  |t  |t  |jdkr8tjd sL|jdkrZtjd rZ|	t
  n|	t  d S r'   r*   r   r   r   r   r      s    z-FuncScale.set_default_locators_and_formattersN)r!   r"   r#   r$   r2   r   r   r   r   r   r   r   rF      s
   rF   c                       s>   e Zd Zd ZZd fdd	Zdd Zdd Zd	d
 Z  Z	S )LogTransformr4   clipc                    sB   t    |dks|dkr"td|| _tjddd|d| _d S )Nr   r4   z#The log base cannot be <= 0 or == 1TFrM   masknonpositive)r5   r   r9   baser   check_getitem_clip)r   rR   rQ   r<   r   r   r      s    

zLogTransform.__init__c                 C   s    d t| j| j| jrdndS )Nz{}(base={}, nonpositive={!r})rM   rO   )formattyper!   rR   rT   r   r   r   r   __str__   s    zLogTransform.__str__c                 C   s   t jdddj t jt jdt jdt ji| j}|r>||}nt |}|t | j }| jrjd||dk< W d    n1 s~0    Y  |S )Nignoredivideinvalid   
   r   )	nperrstateeloglog2log10getrR   rT   )r   arb   outr   r   r   r@      s     


*z!LogTransform.transform_non_affinec                 C   s
   t | jS r>   )InvertedLogTransformrR   r   r   r   r   rA      s    zLogTransform.inverted)rM   
r!   r"   r#   rC   rD   r   rW   r@   rA   rE   r   r   r<   r   rL      s
   rL   c                       s<   e Zd Zd ZZ fddZdd Zdd Zdd	 Z  Z	S )
rh   r4   c                    s   t    || _d S r>   )r5   r   rR   )r   rR   r<   r   r   r      s    
zInvertedLogTransform.__init__c                 C   s   d t| j| jS )Nz{}(base={}))rU   rV   r!   rR   r   r   r   r   rW      s    zInvertedLogTransform.__str__c                 C   s   t | j|S r>   )r_   powerrR   r   rf   r   r   r   r@      s    z)InvertedLogTransform.transform_non_affinec                 C   s
   t | jS r>   )rL   rR   r   r   r   r   rA      s    zInvertedLogTransform.invertedri   r   r   r<   r   rh      s
   rh   c                   @   sJ   e Zd ZdZdZddddddZed	d
 Zdd Zdd Z	dd Z
dS )LogScalezT
    A standard logarithmic scale.  Care is taken to only plot positive values.
    rb   r]   NrM   )rR   subsrQ   c                C   s   t ||| _|| _dS )a  
        Parameters
        ----------
        axis : `~matplotlib.axis.Axis`
            The axis for the scale.
        base : float, default: 10
            The base of the logarithm.
        nonpositive : {'clip', 'mask'}, default: 'clip'
            Determines the behavior for non-positive values. They can either
            be masked as invalid, or clipped to a very small positive number.
        subs : sequence of int, default: None
            Where to place the subticks between each major tick.  For example,
            in a log10 scale, ``[2, 3, 4, 5, 6, 7, 8, 9]`` will place 8
            logarithmically spaced minor ticks between each major tick.
        N)rL   rH   rm   )r   r   rR   rm   rQ   r   r   r   r   	  s    zLogScale.__init__c                 C   s   | j jS r>   rH   rR   r   r   r   r   <lambda>      zLogScale.<lambda>c                 C   sR   | t| j |t| j |t| j| j |t| j| jd ud d S )N)ZlabelOnlyBase)r+   r	   rR   r,   r   r1   rm   r-   r   r   r   r   r     s    z,LogScale.set_default_locators_and_formattersc                 C   s   | j S )z6Return the `.LogTransform` associated with this scale.rK   r   r   r   r   r   '  s    zLogScale.get_transformc                 C   s.   t |sd}|dkr|n||dkr(|n|fS )z$Limit the domain to positive values.gYnr   r_   isfiniter   r   r   r   r    +  s
    
zLogScale.limit_range_for_scale)r!   r"   r#   r$   r2   r   propertyrR   r   r   r    r   r   r   r   rl     s   	rl   c                   @   s2   e Zd ZdZdZdddZedd Zdd	 Zd
S )FuncScaleLogzu
    Provide an arbitrary scale with user-supplied function for the axis and
    then put on a logarithmic axes.
    functionlogr]   c                 C   s&   |\}}d| _ t||t| | _dS )a  
        Parameters
        ----------
        axis : `matplotlib.axis.Axis`
            The axis for the scale.
        functions : (callable, callable)
            two-tuple of the forward and inverse functions for the scale.
            The forward function must be monotonic.

            Both functions must have the signature::

                def forward(values: array-like) -> array-like

        base : float, default: 10
            Logarithmic base of the scale.
        N)rm   r3   rL   rH   )r   r   rI   rR   r:   r;   r   r   r   r   <  s    zFuncScaleLog.__init__c                 C   s
   | j jjS r>   )rH   _brR   r   r   r   r   rR   Q  s    zFuncScaleLog.basec                 C   s   | j S )z3Return the `.Transform` associated with this scale.rK   r   r   r   r   r   U  s    zFuncScaleLog.get_transformN)r]   )	r!   r"   r#   r$   r2   r   rs   rR   r   r   r   r   r   rt   4  s   

rt   c                       s4   e Zd Zd ZZ fddZdd Zdd Z  ZS )SymmetricalLogTransformr4   c                    sp   t    |dkrtd|dkr*td|dkr:td|| _|| _|| _|d| jd   | _t|| _	d S )N      ?z'base' must be larger than 1        z'linthresh' must be positivez'linscale' must be positive)
r5   r   r9   rR   	linthreshlinscale_linscale_adjr_   rb   	_log_base)r   rR   r{   r|   r<   r   r   r   ]  s    
z SymmetricalLogTransform.__init__c                 C   s   t |}t jdddF t || j | jt || j | j   }|| jk}W d    n1 sd0    Y  || | j ||< |S NrX   rY   )r_   absr`   signr{   r}   rb   r~   r   rf   Zabs_arg   insider   r   r   r@   k  s    
(z,SymmetricalLogTransform.transform_non_affinec                 C   s   t | j| j| jS r>   )InvertedSymmetricalLogTransformrR   r{   r|   r   r   r   r   rA   u  s    
z SymmetricalLogTransform.inverted	r!   r"   r#   rC   rD   r   r@   rA   rE   r   r   r<   r   rw   Z  s   
rw   c                       s4   e Zd Zd ZZ fddZdd Zdd Z  ZS )r   r4   c                    sL   t    t|||}|| _|| _||| _|| _|d| jd   | _d S )Nrx   rz   )	r5   r   rw   rR   r{   rJ   invlinthreshr|   r}   )r   rR   r{   r|   symlogr<   r   r   r   }  s    
z(InvertedSymmetricalLogTransform.__init__c                 C   s   t |}t jdddD t || j t | j|| j | j  }|| jk}W d    n1 sb0    Y  || | j ||< |S r   )	r_   r   r`   r   r{   rj   rR   r}   r   r   r   r   r   r@     s    
(z4InvertedSymmetricalLogTransform.transform_non_affinec                 C   s   t | j| j| jS r>   )rw   rR   r{   r|   r   r   r   r   rA     s    z(InvertedSymmetricalLogTransform.invertedr   r   r   r<   r   r   z  s   	
r   c                   @   s\   e Zd ZdZdZddddddd	Zed
d Zedd Zedd Z	dd Z
dd ZdS )SymmetricalLogScalea  
    The symmetrical logarithmic scale is logarithmic in both the
    positive and negative directions from the origin.

    Since the values close to zero tend toward infinity, there is a
    need to have a range around zero that is linear.  The parameter
    *linthresh* allows the user to specify the size of this range
    (-*linthresh*, *linthresh*).

    Parameters
    ----------
    base : float, default: 10
        The base of the logarithm.

    linthresh : float, default: 2
        Defines the range ``(-x, x)``, within which the plot is linear.
        This avoids having the plot go to infinity around zero.

    subs : sequence of int
        Where to place the subticks between each major tick.
        For example, in a log10 scale: ``[2, 3, 4, 5, 6, 7, 8, 9]`` will place
        8 logarithmically spaced minor ticks between each major tick.

    linscale : float, optional
        This allows the linear range ``(-linthresh, linthresh)`` to be
        stretched relative to the logarithmic range. Its value is the number of
        decades to use for each half of the linear range. For example, when
        *linscale* == 1.0 (the default), the space used for the positive and
        negative halves of the linear range will be equal to one decade in
        the logarithmic range.
    r   r]   r\   Nr4   )rR   r{   rm   r|   c                C   s   t |||| _|| _d S r>   )rw   rH   rm   )r   r   rR   r{   rm   r|   r   r   r   r     s    zSymmetricalLogScale.__init__c                 C   s   | j jS r>   rn   r   r   r   r   ro     rp   zSymmetricalLogScale.<lambda>c                 C   s   | j jS r>   )rH   r{   r   r   r   r   ro     rp   c                 C   s   | j jS r>   )rH   r|   r   r   r   r   ro     rp   c                 C   sH   | t|   |t| j |t|  | j |t	  d S r>   )
r+   r   r   r,   r   rR   r1   rm   r-   r   r   r   r   r   r     s    z7SymmetricalLogScale.set_default_locators_and_formattersc                 C   s   | j S )zAReturn the `.SymmetricalLogTransform` associated with this scale.rK   r   r   r   r   r     s    z!SymmetricalLogScale.get_transform)r!   r"   r#   r$   r2   r   rs   rR   r{   r|   r   r   r   r   r   r   r     s   r   c                       s8   e Zd ZdZd ZZ fddZdd Zdd Z  Z	S )	AsinhTransformz<Inverse hyperbolic-sine transformation used by `.AsinhScale`r4   c                    s$   t    |dkrtd|| _d S )Nry   z8Scale parameter 'linear_width' must be strictly positive)r5   r   r9   linear_widthr   r   r<   r   r   r     s    
zAsinhTransform.__init__c                 C   s   | j t|| j   S r>   )r   r_   arcsinhrk   r   r   r   r@     s    z#AsinhTransform.transform_non_affinec                 C   s
   t | jS r>   )InvertedAsinhTransformr   r   r   r   r   rA     s    zAsinhTransform.invertedrB   r   r   r<   r   r     s
   r   c                       s8   e Zd ZdZd ZZ fddZdd Zdd Z  Z	S )	r   z4Hyperbolic sine transformation used by `.AsinhScale`r4   c                    s   t    || _d S r>   )r5   r   r   r   r<   r   r   r     s    
zInvertedAsinhTransform.__init__c                 C   s   | j t|| j   S r>   )r   r_   sinhrk   r   r   r   r@     s    z+InvertedAsinhTransform.transform_non_affinec                 C   s
   t | jS r>   )r   r   r   r   r   r   rA     s    zInvertedAsinhTransform.invertedrB   r   r   r<   r   r     s
   r   c                	       s`   e Zd ZdZdZddddddddd	Zd
ddd fdd
Zedd Zdd Z	dd Z
  ZS )
AsinhScalea  
    A quasi-logarithmic scale based on the inverse hyperbolic sine (asinh)

    For values close to zero, this is essentially a linear scale,
    but for large magnitude values (either positive or negative)
    it is asymptotically logarithmic. The transition between these
    linear and logarithmic regimes is smooth, and has no discontinuities
    in the function gradient in contrast to
    the `.SymmetricalLogScale` ("symlog") scale.

    Specifically, the transformation of an axis coordinate :math:`a` is
    :math:`a \rightarrow a_0 \sinh^{-1} (a / a_0)` where :math:`a_0`
    is the effective width of the linear region of the transformation.
    In that region, the transformation is
    :math:`a \rightarrow a + \mathcal{O}(a^3)`.
    For large values of :math:`a` the transformation behaves as
    :math:`a \rightarrow a_0 \, \mathrm{sgn}(a) \ln |a| + \mathcal{O}(1)`.

    .. note::

       This API is provisional and may be revised in the future
       based on early user feedback.
    asinh)r\   )r\      )r\      )r\   r      )r      )   i   )   r   r   r   r]   r   @   i   rx   r]   auto)r   rR   rm   c                   sD   t  | t|| _t|| _|dkr:| j| j| _n|| _dS )a	  
        Parameters
        ----------
        linear_width : float, default: 1
            The scale parameter (elsewhere referred to as :math:`a_0`)
            defining the extent of the quasi-linear region,
            and the coordinate values beyond which the transformation
            becomes asymptotically logarithmic.
        base : int, default: 10
            The number base used for rounding tick locations
            on a logarithmic scale. If this is less than one,
            then rounding is to the nearest integer multiple
            of powers of ten.
        subs : sequence of int
            Multiples of the number base used for minor ticks.
            If set to 'auto', this will use built-in defaults,
            e.g. (2, 5) for base=10.
        r   N)	r5   r   r   rH   int_baseauto_tick_multipliersre   _subs)r   r   r   rR   rm   kwargsr<   r   r   r     s    

zAsinhScale.__init__c                 C   s   | j jS r>   )rH   r   r   r   r   r   ro   /  rp   zAsinhScale.<lambda>c                 C   s   | j S r>   rK   r   r   r   r   r   1  s    zAsinhScale.get_transformc                 C   sZ   |j t| j| jdt| j| j| jdt d | jdkrJ|t| j n|df d S )N)rR   )rR   rm   )Zmajor_locatorZminor_locatorZminor_formatterr4   z{x:.3g})setr   r   r   r   r   r,   r   r   r   r   r   r   4  s    

z.AsinhScale.set_default_locators_and_formatters)r!   r"   r#   r$   r2   r   r   rs   r   r   r   rE   r   r   r<   r   r     s"   r   c                       s>   e Zd Zd ZZd fdd	Zdd Zdd Zd	d
 Z  Z	S )LogitTransformr4   rO   c                    s6   t    tjddg|d || _ddd| | _d S )NrO   rM   rP   TFrN   )r5   r   r   check_in_list_nonpositiverT   r   rQ   r<   r   r   r   D  s    
zLogitTransform.__init__c                 C   sb   t jddd" t |d|  }W d   n1 s60    Y  | jr^d||dk< d|d|k< |S )z,logit transform (base 10), masked or clippedrX   rY   r4   Nr^   r   i  )r_   r`   rd   rT   )r   rf   rg   r   r   r   r@   J  s    0z#LogitTransform.transform_non_affinec                 C   s
   t | jS r>   )LogisticTransformr   r   r   r   r   rA   S  s    zLogitTransform.invertedc                 C   s   d t| j| jS Nz{}({!r})rU   rV   r!   r   r   r   r   r   rW   V  s    zLogitTransform.__str__)rO   
r!   r"   r#   rC   rD   r   r@   rA   rW   rE   r   r   r<   r   r   A  s
   	r   c                       s>   e Zd Zd ZZd fdd	Zdd Zdd Zd	d
 Z  Z	S )r   r4   rO   c                    s   t    || _d S r>   )r5   r   r   r   r<   r   r   r   ]  s    
zLogisticTransform.__init__c                 C   s   ddd|    S )zlogistic transform (base 10)rx   r4   r]   r   rk   r   r   r   r@   a  s    z&LogisticTransform.transform_non_affinec                 C   s
   t | jS r>   )r   r   r   r   r   r   rA   e  s    zLogisticTransform.invertedc                 C   s   d t| j| jS r   r   r   r   r   r   rW   h  s    zLogisticTransform.__str__)rO   r   r   r   r<   r   r   Z  s
   r   c                   @   s>   e Zd ZdZdZddddddZd	d
 Zdd Zdd ZdS )
LogitScalez
    Logit scale for data between zero and one, both excluded.

    This scale is similar to a log scale close to zero and to one, and almost
    linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
    logitrO   z\frac{1}{2}Fone_halfuse_overlinec                C   s   t || _|| _|| _dS )a  
        Parameters
        ----------
        axis : `matplotlib.axis.Axis`
            Currently unused.
        nonpositive : {'mask', 'clip'}
            Determines the behavior for values beyond the open interval ]0, 1[.
            They can either be masked as invalid, or clipped to a number very
            close to 0 or 1.
        use_overline : bool, default: False
            Indicate the usage of survival notation (\overline{x}) in place of
            standard notation (1-x) for probability close to one.
        one_half : str, default: r"\frac{1}{2}"
            The string used for ticks formatter to represent 1/2.
        N)r   rH   _use_overline	_one_half)r   r   rQ   r   r   r   r   r   r   u  s    
zLogitScale.__init__c                 C   s   | j S )z8Return the `.LogitTransform` associated with this scale.rK   r   r   r   r   r     s    zLogitScale.get_transformc                 C   sN   | t  |t| j| jd |tdd |td| j| jd d S )Nr   T)minor)r   r   r   )r+   r   r,   r   r   r   r1   r-   r   r   r   r   r     s    z.LogitScale.set_default_locators_and_formattersc                 C   s2   t |sd}|dkr|n||dkr,d| n|fS )zH
        Limit the domain to values between 0 and 1 (excluded).
        gHz>r   r4   rq   r   r   r   r   r      s
    
z LogitScale.limit_range_for_scaleN)rO   )	r!   r"   r#   r$   r2   r   r   r   r    r   r   r   r   r   l  s   r   )r&   rb   r   r   r   rG   ru   c                   C   s   t tS )z)Return the names of the available scales.)sorted_scale_mappingr   r   r   r   get_scale_names  s    r   c                 K   s@   | |   kr"tjddd |   } tjt| d}||fi |S )z
    Return a scale class by name.

    Parameters
    ----------
    scale : {%(names)s}
    axis : `matplotlib.axis.Axis`
    z3.5zjSupport for case-insensitive scales is deprecated since %(since)s and support will be removed %(removal)s.)message)scale)lowerr   warn_deprecatedrS   r   )r   r   r   	scale_clsr   r   r   scale_factory  s    	r   namesz, c                 C   s   | t | j< dS )z
    Register a new kind of scale.

    Parameters
    ----------
    scale_class : subclass of `ScaleBase`
        The scale to register.
    N)r   r2   )scale_classr   r   r   register_scale  s    	r   c               	   C   sP   g } t  D ]8\}}t|jp"d}| d|dt|ddg qd| S )zF
    Helper function for generating docstrings related to scales.
     z    z        
)	r   itemsinspectgetdocr   extendtextwrapindentjoin)docsr2   r   	docstringr   r   r   _get_scale_docs  s    
r   z{%s}c                 C   s   g | ]}t |qS r   )repr).0r(   r   r   r   
<listcomp>  rp   r   )
scale_typeZ
scale_docs)4r$   r   r   numpyr_   
matplotlibr/   r   r   Zmatplotlib.tickerr   r   r   r   r   r	   r
   r   r   r   r   Zmatplotlib.transformsr   r   r   r%   r3   rF   rL   rh   rl   rt   rw   r   r   r   r   r   r   r   r   r   r   r   r   mapr   r   r   interpdupdaterstripr   r   r   r   <module>   sX   4<"$*)1& 7T@