a
    SicH                     @   s   d Z ddlmZ ddlZddlZddlZddlmZ ej	edddd Z
G d	d
 d
eZdd Zdd Zdd Zdd Zd-ddZG dd dZd.ddZd/ddZdd  Zd!d" Zd0d$d%Zd&d' Zd(d) Zd1d+d,ZdS )2zO
A module providing some utility functions regarding Bezier path manipulation.
    )	lru_cacheN)_api   )maxsizec                 C   sF   || krdS t || | }td|d }t| d | | tS )Nr      )minnparangeprodastypeint)nki r   M/var/www/html/django/DPS/env/lib/python3.9/site-packages/matplotlib/bezier.py_comb   s
    r   c                   @   s   e Zd ZdS )NonIntersectingPathExceptionN)__name__
__module____qualname__r   r   r   r   r      s   r   c                    s   ||  ||  }|| ||  }	||  }
}||  }}|
| ||   t  dk r\td||  }}| |
 }} fdd||||fD \}}}}|| ||	  }|| ||	  }||fS )z
    Return the intersection between the line through (*cx1*, *cy1*) at angle
    *t1* and the line through (*cx2*, *cy2*) at angle *t2*.
    g-q=zcGiven lines do not intersect. Please verify that the angles are not equal or differ by 180 degrees.c                    s   g | ]}|  qS r   r   ).0r   Zad_bcr   r   
<listcomp>9       z$get_intersection.<locals>.<listcomp>)abs
ValueError)Zcx1Zcy1cos_t1sin_t1Zcx2Zcy2cos_t2sin_t2Z	line1_rhsZ	line2_rhsabcdZa_Zb_c_Zd_xyr   r   r   get_intersection    s    
"r(   c                 C   sl   |dkr| || |fS ||  }}| | }}|| |  || |  }	}
|| |  || |  }}|	|
||fS )z
    For a line passing through (*cx*, *cy*) and having an angle *t*, return
    locations of the two points located along its perpendicular line at the
    distance of *length*.
            r   )cxcyZcos_tZsin_tlengthr   r   r   r    x1y1x2y2r   r   r   get_normal_pointsA   s    r1   c                 C   s(   | d d d|  | dd  |  }|S )Nr   r   )betat	next_betar   r   r   _de_casteljau1Z   s    $r6   c                 C   s\   t | } | g}t| |} ||  t| dkrq4qdd |D }dd t|D }||fS )z
    Split a Bezier segment defined by its control points *beta* into two
    separate segments divided at *t* and return their control points.
    r   c                 S   s   g | ]}|d  qS )r   r   r   r3   r   r   r   r   k   r   z&split_de_casteljau.<locals>.<listcomp>c                 S   s   g | ]}|d  qS )r2   r   r7   r   r   r   r   l   r   )r   asarrayr6   appendlenreversed)r3   r4   Z	beta_listZ	left_betaZ
right_betar   r   r   split_de_casteljau_   s    


r<   r)         ?{Gz?c                 C   s   | |}| |}||}||}||kr8||kr8t dt|d |d  |d |d  |k rh||fS d||  }	| |	}
||
}||A r|	}|
}q8|	}|
}|}q8dS )a  
    Find the intersection of the Bezier curve with a closed path.

    The intersection point *t* is approximated by two parameters *t0*, *t1*
    such that *t0* <= *t* <= *t1*.

    Search starts from *t0* and *t1* and uses a simple bisecting algorithm
    therefore one of the end points must be inside the path while the other
    doesn't. The search stops when the distance of the points parametrized by
    *t0* and *t1* gets smaller than the given *tolerance*.

    Parameters
    ----------
    bezier_point_at_t : callable
        A function returning x, y coordinates of the Bezier at parameter *t*.
        It must have the signature::

            bezier_point_at_t(t: float) -> tuple[float, float]

    inside_closedpath : callable
        A function returning True if a given point (x, y) is inside the
        closed path. It must have the signature::

            inside_closedpath(point: tuple[float, float]) -> bool

    t0, t1 : float
        Start parameters for the search.

    tolerance : float
        Maximal allowed distance between the final points.

    Returns
    -------
    t0, t1 : float
        The Bezier path parameters.
    z3Both points are on the same side of the closed pathr   r         ?N)r   r   hypot)bezier_point_at_tinside_closedpatht0t1	tolerancestartendZstart_insideZ
end_insideZmiddle_tmiddleZmiddle_insider   r   r   *find_bezier_t_intersecting_with_closedpathq   s&    &(rI   c                   @   s`   e Zd ZdZdd Zdd Zdd Zedd	 Zed
d Z	edd Z
edd Zdd ZdS )BezierSegmentz
    A d-dimensional Bezier segment.

    Parameters
    ----------
    control_points : (N, d) array
        Location of the *N* control points.
    c                    sV   t | _ jj\ _ _t  j _ fddt jD } jj	| j	 _
d S )Nc                    s:   g | ]2}t  jd  t |t  jd  |   qS )r   )math	factorial_N)r   r   selfr   r   r      s   z*BezierSegment.__init__.<locals>.<listcomp>)r   r8   _cpointsshaperM   _dr	   _ordersrangeT_px)rO   control_pointscoeffr   rN   r   __init__   s    
zBezierSegment.__init__c                 C   s>   t |}t jd| | jddd t j|| j | j S )a&  
        Evaluate the Bezier curve at point(s) t in [0, 1].

        Parameters
        ----------
        t : (k,) array-like
            Points at which to evaluate the curve.

        Returns
        -------
        (k, d) array
            Value of the curve for each point in *t*.
        r   Nr2   )r   r8   powerouterrS   rV   rO   r4   r   r   r   __call__   s    
zBezierSegment.__call__c                 C   s   t | |S )zX
        Evaluate the curve at a single point, returning a tuple of *d* floats.
        )tupler\   r   r   r   
point_at_t   s    zBezierSegment.point_at_tc                 C   s   | j S )z The control points of the curve.)rP   rN   r   r   r   rW      s    zBezierSegment.control_pointsc                 C   s   | j S )zThe dimension of the curve.)rR   rN   r   r   r   	dimension   s    zBezierSegment.dimensionc                 C   s
   | j d S )z@Degree of the polynomial. One less the number of control points.r   )rM   rN   r   r   r   degree   s    zBezierSegment.degreec                 C   s|   | j }|dkrtdt | j}t|d dddf }t|d dddf }d||  t|| }t||| | S )a  
        The polynomial coefficients of the Bezier curve.

        .. warning:: Follows opposite convention from `numpy.polyval`.

        Returns
        -------
        (n+1, d) array
            Coefficients after expanding in polynomial basis, where :math:`n`
            is the degree of the bezier curve and :math:`d` its dimension.
            These are the numbers (:math:`C_j`) such that the curve can be
            written :math:`\sum_{j=0}^n C_j t^j`.

        Notes
        -----
        The coefficients are calculated as

        .. math::

            {n \choose j} \sum_{i=0}^j (-1)^{i+j} {j \choose i} P_i

        where :math:`P_i` are the control points of the curve.
        
   zFPolynomial coefficients formula unstable for high order Bezier curves!r   Nr2   )ra   warningswarnRuntimeWarningrW   r   r	   r   )rO   r   Pjr   Z	prefactorr   r   r   polynomial_coefficients   s    z%BezierSegment.polynomial_coefficientsc           
      C   s   | j }|dkr"tg tg fS | j}td|d dddf |dd  }g }g }t|jD ]8\}}t|ddd }|| |t	|| qbt
|}t
|}t||dk@ |dk@ }	||	 t||	 fS )a  
        Return the dimension and location of the curve's interior extrema.

        The extrema are the points along the curve where one of its partial
        derivatives is zero.

        Returns
        -------
        dims : array of int
            Index :math:`i` of the partial derivative which is zero at each
            interior extrema.
        dzeros : array of float
            Of same size as dims. The :math:`t` such that :math:`d/dx_i B(t) =
            0`
        r   Nr2   r   )ra   r   arrayrh   r	   	enumeraterU   rootsr9   	full_likeconcatenateisrealreal)
rO   r   ZCjZdCjdimsrk   r   pirin_ranger   r   r   axis_aligned_extrema  s    (


z"BezierSegment.axis_aligned_extremaN)r   r   r   __doc__rY   r]   r_   propertyrW   r`   ra   rh   rt   r   r   r   r   rJ      s   		



#rJ   c           	      C   s>   t | }|j}t|||d\}}t| || d \}}||fS )ao  
    Split a Bezier curve into two at the intersection with a closed path.

    Parameters
    ----------
    bezier : (N, 2) array-like
        Control points of the Bezier segment. See `.BezierSegment`.
    inside_closedpath : callable
        A function returning True if a given point (x, y) is inside the
        closed path. See also `.find_bezier_t_intersecting_with_closedpath`.
    tolerance : float
        The tolerance for the intersection. See also
        `.find_bezier_t_intersecting_with_closedpath`.

    Returns
    -------
    left, right
        Lists of control points for the two Bezier segments.
    )rE   g       @)rJ   r_   rI   r<   )	bezierrB   rE   bzrA   rC   rD   _left_rightr   r   r   )split_bezier_intersecting_with_closedpath4  s    
r{   Fc                 C   s  ddl m} |  }t|\}}||dd }|}	d}
d}|D ]N\}}|}
|t|d 7 }||dd |krt|	dd |g} q|}	q@td|d}t	|||\}}t|dkr|j
g}|j|j
g}nft|d	kr|j|jg}|j|j|jg}n<t|d
kr2|j|j|jg}|j|j|j|jg}ntd|dd }|dd }| jdu r|t| jd| |g}|t|| j|d g}nd|t| jd|
 |gt| jd|
 |g}|t|| j|d gt|| j|d g}|r|s|| }}||fS )z`
    Divide a path into two segments at the point where ``inside(x, y)`` becomes
    False.
    r   )PathNr      z*The path does not intersect with the patch)r2   r~         zThis should never be reached)pathr|   iter_segmentsnextr:   r   rm   r   reshaper{   LINETOMOVETOCURVE3CURVE4AssertionErrorcodesvertices)r   insiderE   Zreorder_inoutr|   Z	path_iterZ
ctl_pointscommandZbegin_insideZctl_points_oldZioldr   Zbezier_pathbpleftrightZ
codes_leftZcodes_rightZ
verts_leftZverts_rightZpath_inZpath_outr   r   r   split_path_inoutW  sV    

r   c                    s   |d  fdd}|S )z
    Return a function that checks whether a point is in a circle with center
    (*cx*, *cy*) and radius *r*.

    The returned function has the signature::

        f(xy: tuple[float, float]) -> bool
    r~   c                    s$   | \}}|  d | d  k S )Nr~   r   )xyr&   r'   r*   r+   Zr2r   r   _f  s    zinside_circle.<locals>._fr   )r*   r+   rr   r   r   r   r   inside_circle  s    	r   c                 C   sB   ||  ||  }}|| ||  d }|dkr2dS || || fS )Nr?   r   )r)   r)   r   )x0y0r-   r.   dxdyr$   r   r   r   get_cos_sin  s
    r   h㈵>c                 C   sN   t | |}t ||}t|| }||k r0dS t|t j |k rFdS dS dS )a  
    Check if two lines are parallel.

    Parameters
    ----------
    dx1, dy1, dx2, dy2 : float
        The gradients *dy*/*dx* of the two lines.
    tolerance : float
        The angular tolerance in radians up to which the lines are considered
        parallel.

    Returns
    -------
    is_parallel
        - 1 if two lines are parallel in same direction.
        - -1 if two lines are parallel in opposite direction.
        - False otherwise.
    r   r2   FN)r   arctan2r   rq   )dx1Zdy1dx2Zdy2rE   theta1theta2Zdthetar   r   r   check_if_parallel  s    r   c              	   C   s|  | d \}}| d \}}| d \}}t || || || || }|dkrrtd t||||\}	}
|	|
 }}n$t||||\}	}
t||||\}}t|||	|
|\}}}}t|||||\}}}}z8t|||	|
||||\}}t|||	|
||||\}}W nH tyF   d||  d||   }}d||  d||   }}Y n0 ||f||f||fg}||f||f||fg}||fS )z
    Given the quadratic Bezier control points *bezier2*, returns
    control points of quadratic Bezier lines roughly parallel to given
    one separated by *width*.
    r   r   r~   r2   z8Lines do not intersect. A straight line is used instead.r?   )r   r   warn_externalr   r1   r(   r   )bezier2widthc1xc1ycmxcmyc2xc2yZparallel_testr   r   r   r    c1x_leftc1y_left	c1x_right	c1y_rightZc2x_leftZc2y_leftZ	c2x_rightZ	c2y_rightZcmx_leftZcmy_leftZ	cmx_rightZ	cmy_right	path_left
path_rightr   r   r   get_parallels  sR    

r   c                 C   s>   dd| | |   }dd| ||   }| |f||f||fgS )z
    Find control points of the Bezier curve passing through (*c1x*, *c1y*),
    (*mmx*, *mmy*), and (*c2x*, *c2y*), at parametric values 0, 0.5, and 1.
    r?   r   r   )r   r   ZmmxZmmyr   r   r   r   r   r   r   find_control_points  s    r   r?   c           %      C   s(  | d \}}| d \}}| d \}	}
t ||||\}}t |||	|
\}}t|||||| \}}}}t|	|
|||| \}}}}|| d || d  }}||	 d ||
 d  }}|| d || d  }}t ||||\}}t|||||| \}} }!}"t|||| ||}#t|||!|"||}$|#|$fS )z
    Being similar to get_parallels, returns control points of two quadratic
    Bezier lines having a width roughly parallel to given one separated by
    *width*.
    r   r   r~   r?   )r   r1   r   )%r   r   w1wmw2r   r   r   r   Zc3xZc3yr   r   r   r    r   r   r   r   Zc3x_leftZc3y_leftZ	c3x_rightZ	c3y_rightZc12xZc12yZc23xZc23yZc123xZc123yZcos_t123Zsin_t123Z
c123x_leftZ
c123y_leftZc123x_rightZc123y_rightr   r   r   r   r   make_wedged_bezier2"  s0    


r   )r)   r=   r>   )r>   )r>   F)r   )r=   r?   r)   )ru   	functoolsr   rK   rc   numpyr   
matplotlibr   	vectorizer   r   r   r(   r1   r6   r<   rI   rJ   r{   r   r   r   r   r   r   r   r   r   r   r   <module>   s4   ! 
D  
#
=	
J
