a
    Sic                     @   s@   d Z ddlm  mZ ddlmZ edg dG dd dZdS )z&Input dataset creator for `model.fit`.    N)keras_exportz'keras.utils.experimental.DatasetCreator)v1c                   @   s"   e Zd ZdZdddZdd ZdS )DatasetCreatora
  Object that returns a `tf.data.Dataset` upon invoking.

    `tf.keras.utils.experimental.DatasetCreator` is designated as a supported
    type for `x`, or the input, in `tf.keras.Model.fit`. Pass an instance of
    this class to `fit` when using a callable (with a `input_context` argument)
    that returns a `tf.data.Dataset`.

    ```python
    model = tf.keras.Sequential([tf.keras.layers.Dense(10)])
    model.compile(tf.keras.optimizers.SGD(), loss="mse")

    def dataset_fn(input_context):
      global_batch_size = 64
      batch_size = input_context.get_per_replica_batch_size(global_batch_size)
      dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat()
      dataset = dataset.shard(
          input_context.num_input_pipelines, input_context.input_pipeline_id)
      dataset = dataset.batch(batch_size)
      dataset = dataset.prefetch(2)
      return dataset

    input_options = tf.distribute.InputOptions(
        experimental_fetch_to_device=True,
        experimental_per_replica_buffer_size=2)
    model.fit(tf.keras.utils.experimental.DatasetCreator(
        dataset_fn, input_options=input_options), epochs=10, steps_per_epoch=10)
    ```

    `Model.fit` usage with `DatasetCreator` is intended to work across all
    `tf.distribute.Strategy`s, as long as `Strategy.scope` is used at model
    creation:

    ```python
    strategy = tf.distribute.experimental.ParameterServerStrategy(
        cluster_resolver)
    with strategy.scope():
      model = tf.keras.Sequential([tf.keras.layers.Dense(10)])
    model.compile(tf.keras.optimizers.SGD(), loss="mse")

    def dataset_fn(input_context):
      ...

    input_options = ...
    model.fit(tf.keras.utils.experimental.DatasetCreator(
        dataset_fn, input_options=input_options), epochs=10, steps_per_epoch=10)
    ```

    Note: When using `DatasetCreator`, `steps_per_epoch` argument in `Model.fit`
    must be provided as the cardinality of such input cannot be inferred.

    Args:
      dataset_fn: A callable that takes a single argument of type
        `tf.distribute.InputContext`, which is used for batch size calculation
        and cross-worker input pipeline sharding (if neither is needed, the
        `InputContext` parameter can be ignored in the `dataset_fn`), and
        returns a `tf.data.Dataset`.
      input_options: Optional `tf.distribute.InputOptions`, used for specific
        options when used with distribution, for example, whether to prefetch
        dataset elements to accelerator device memory or host device memory, and
        prefetch buffer size in the replica device memory. No effect if not used
        with distributed training. See `tf.distribute.InputOptions` for more
        information.
    Nc                 C   sF   t |std| |r6t|tjjs6td| || _|| _d S )NzB`dataset_fn` for `DatasetCreator` must be a `callable`. Received: zW`input_options` for `DatasetCreator` must be a `tf.distribute.InputOptions`. Received: )callable	TypeError
isinstancetf
distributeInputOptions
dataset_fninput_options)selfr   r    r   W/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/utils/dataset_creator.py__init__Z   s     zDatasetCreator.__init__c                 O   s2   | j |i |}t|tjjs.td| d|S )NzOThe `callable` provided to `DatasetCreator` must return a Dataset. It returns "")r   r   r   dataDatasetr   )r   argskwargsdatasetr   r   r   __call__k   s    zDatasetCreator.__call__)N)__name__
__module____qualname____doc__r   r   r   r   r   r   r      s   @
r   )r   tensorflow.compat.v2compatv2r    tensorflow.python.util.tf_exportr   r   r   r   r   r   <module>   s   
