# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SGD optimizer implementation."""


import tensorflow.compat.v2 as tf

from keras.optimizers.optimizer_v2 import optimizer_v2

# isort: off
from tensorflow.python.util.tf_export import keras_export


@keras_export("keras.optimizers.SGD")
class SGD(optimizer_v2.OptimizerV2):
    r"""Gradient descent (with momentum) optimizer.

    Update rule for parameter `w` with gradient `g` when `momentum` is 0:

    ```python
    w = w - learning_rate * g
    ```

    Update rule when `momentum` is larger than 0:

    ```python
    velocity = momentum * velocity - learning_rate * g
    w = w + velocity
    ```

    When `nesterov=True`, this rule becomes:

    ```python
    velocity = momentum * velocity - learning_rate * g
    w = w + momentum * velocity - learning_rate * g
    ```

    Args:
      learning_rate: A `Tensor`, floating point value, or a schedule that is a
        `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
        that takes no arguments and returns the actual value to use. The
        learning rate. Defaults to 0.01.
      momentum: float hyperparameter >= 0 that accelerates gradient descent in
        the relevant direction and dampens oscillations. Defaults to 0, i.e.,
        vanilla gradient descent.
      nesterov: boolean. Whether to apply Nesterov momentum.
        Defaults to `False`.
      name: Optional name prefix for the operations created when applying
        gradients.  Defaults to `"SGD"`.
      **kwargs: keyword arguments. Allowed arguments are `clipvalue`,
        `clipnorm`, `global_clipnorm`.
        If `clipvalue` (float) is set, the gradient of each weight
        is clipped to be no higher than this value.
        If `clipnorm` (float) is set, the gradient of each weight
        is individually clipped so that its norm is no higher than this value.
        If `global_clipnorm` (float) is set the gradient of all weights is
        clipped so that their global norm is no higher than this value.

    Usage:

    >>> opt = tf.keras.optimizers.SGD(learning_rate=0.1)
    >>> var = tf.Variable(1.0)
    >>> loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
    >>> step_count = opt.minimize(loss, [var]).numpy()
    >>> # Step is `- learning_rate * grad`
    >>> var.numpy()
    0.9

    >>> opt = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
    >>> var = tf.Variable(1.0)
    >>> val0 = var.value()
    >>> loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
    >>> # First step is `- learning_rate * grad`
    >>> step_count = opt.minimize(loss, [var]).numpy()
    >>> val1 = var.value()
    >>> (val0 - val1).numpy()
    0.1
    >>> # On later steps, step-size increases because of momentum
    >>> step_count = opt.minimize(loss, [var]).numpy()
    >>> val2 = var.value()
    >>> (val1 - val2).numpy()
    0.18

    Reference:
        - For `nesterov=True`, See [Sutskever et al., 2013](
          http://jmlr.org/proceedings/papers/v28/sutskever13.pdf).
    """

    _HAS_AGGREGATE_GRAD = True

    def __init__(
        self,
        learning_rate=0.01,
        momentum=0.0,
        nesterov=False,
        name="SGD",
        **kwargs,
    ):
        super().__init__(name, **kwargs)
        self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
        self._set_hyper("decay", self._initial_decay)

        self._momentum = False
        if (
            isinstance(momentum, tf.Tensor)
            or callable(momentum)
            or momentum > 0
        ):
            self._momentum = True
        if isinstance(momentum, (int, float)) and (
            momentum < 0 or momentum > 1
        ):
            raise ValueError(
                f"`momentum` must be between [0, 1]. Received: "
                f"momentum={momentum} (of type {type(momentum)})."
            )
        self._set_hyper("momentum", momentum)

        self.nesterov = nesterov

    def _create_slots(self, var_list):
        if self._momentum:
            for var in var_list:
                self.add_slot(var, "momentum")

    def _prepare_local(self, var_device, var_dtype, apply_state):
        super()._prepare_local(var_device, var_dtype, apply_state)
        apply_state[(var_device, var_dtype)]["momentum"] = tf.identity(
            self._get_hyper("momentum", var_dtype)
        )

    def _resource_apply_dense(self, grad, var, apply_state=None):
        var_device, var_dtype = var.device, var.dtype.base_dtype
        coefficients = (apply_state or {}).get(
            (var_device, var_dtype)
        ) or self._fallback_apply_state(var_device, var_dtype)

        if self._momentum:
            momentum_var = self.get_slot(var, "momentum")
            return tf.raw_ops.ResourceApplyKerasMomentum(
                var=var.handle,
                accum=momentum_var.handle,
                lr=coefficients["lr_t"],
                grad=grad,
                momentum=coefficients["momentum"],
                use_locking=self._use_locking,
                use_nesterov=self.nesterov,
            )
        else:
            return tf.raw_ops.ResourceApplyGradientDescent(
                var=var.handle,
                alpha=coefficients["lr_t"],
                delta=grad,
                use_locking=self._use_locking,
            )

    def _resource_apply_sparse_duplicate_indices(
        self, grad, var, indices, **kwargs
    ):
        if self._momentum:
            return super()._resource_apply_sparse_duplicate_indices(
                grad, var, indices, **kwargs
            )
        else:
            var_device, var_dtype = var.device, var.dtype.base_dtype
            coefficients = kwargs.get("apply_state", {}).get(
                (var_device, var_dtype)
            ) or self._fallback_apply_state(var_device, var_dtype)

            return tf.raw_ops.ResourceScatterAdd(
                resource=var.handle,
                indices=indices,
                updates=-grad * coefficients["lr_t"],
            )

    def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
        # This method is only needed for momentum optimization.
        var_device, var_dtype = var.device, var.dtype.base_dtype
        coefficients = (apply_state or {}).get(
            (var_device, var_dtype)
        ) or self._fallback_apply_state(var_device, var_dtype)

        momentum_var = self.get_slot(var, "momentum")
        return tf.raw_ops.ResourceSparseApplyKerasMomentum(
            var=var.handle,
            accum=momentum_var.handle,
            lr=coefficients["lr_t"],
            grad=grad,
            indices=indices,
            momentum=coefficients["momentum"],
            use_locking=self._use_locking,
            use_nesterov=self.nesterov,
        )

    def get_config(self):
        config = super().get_config()
        config.update(
            {
                "learning_rate": self._serialize_hyperparameter(
                    "learning_rate"
                ),
                "decay": self._initial_decay,
                "momentum": self._serialize_hyperparameter("momentum"),
                "nesterov": self.nesterov,
            }
        )
        return config
