# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================

"""Contains the pooling layer classes and their functional aliases."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import warnings

from keras import layers as keras_layers
from keras.legacy_tf_layers import base

# isort: off
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export


@keras_export(v1=["keras.__internal__.legacy.layers.AveragePooling1D"])
@tf_export(v1=["layers.AveragePooling1D"])
class AveragePooling1D(keras_layers.AveragePooling1D, base.Layer):
    """Average Pooling layer for 1D inputs.

    Args:
      pool_size: An integer or tuple/list of a single integer,
        representing the size of the pooling window.
      strides: An integer or tuple/list of a single integer, specifying the
        strides of the pooling operation.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string, one of `channels_last` (default) or
        `channels_first`. The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch, length, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, length)`.
      name: A string, the name of the layer.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.AveragePooling1D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     pooling = tf.compat.v1.layers.AveragePooling1D(pool_size=2, strides=2)
    ```

    After:

    ```python
     pooling = tf.keras.layers.AveragePooling1D(pool_size=2, strides=2)
    ```
    @end_compatibility
    """

    def __init__(
        self,
        pool_size,
        strides,
        padding="valid",
        data_format="channels_last",
        name=None,
        **kwargs
    ):
        if strides is None:
            raise ValueError("Argument `strides` must not be None.")
        super().__init__(
            pool_size=pool_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            name=name,
            **kwargs
        )


@keras_export(v1=["keras.__internal__.legacy.layers.average_pooling1d"])
@tf_export(v1=["layers.average_pooling1d"])
def average_pooling1d(
    inputs,
    pool_size,
    strides,
    padding="valid",
    data_format="channels_last",
    name=None,
):
    """Average Pooling layer for 1D inputs.

    Args:
      inputs: The tensor over which to pool. Must have rank 3.
      pool_size: An integer or tuple/list of a single integer,
        representing the size of the pooling window.
      strides: An integer or tuple/list of a single integer, specifying the
        strides of the pooling operation.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string, one of `channels_last` (default) or
        `channels_first`. The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch, length, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, length)`.
      name: A string, the name of the layer.

    Returns:
      The output tensor, of rank 3.

    Raises:
      ValueError: if eager execution is enabled.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.AveragePooling1D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     y = tf.compat.v1.layers.average_pooling1d(x, pool_size=2, strides=2)
    ```

    After:

    To migrate code using TF1 functional layers use the [Keras Functional API]
    (https://www.tensorflow.org/guide/keras/functional):

    ```python
     x = tf.keras.Input((28, 28, 1))
     y = tf.keras.layers.AveragePooling1D(pool_size=2, strides=2)(x)
     model = tf.keras.Model(x, y)
    ```
    @end_compatibility
    """
    warnings.warn(
        "`tf.layers.average_pooling1d` is deprecated and "
        "will be removed in a future version. "
        "Please use `tf.keras.layers.AveragePooling1D` instead.",
        stacklevel=2,
    )
    layer = AveragePooling1D(
        pool_size=pool_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        name=name,
    )
    return layer(inputs)


@keras_export(v1=["keras.__internal__.legacy.layers.MaxPooling1D"])
@tf_export(v1=["layers.MaxPooling1D"])
class MaxPooling1D(keras_layers.MaxPooling1D, base.Layer):
    """Max Pooling layer for 1D inputs.

    Args:
      pool_size: An integer or tuple/list of a single integer,
        representing the size of the pooling window.
      strides: An integer or tuple/list of a single integer, specifying the
        strides of the pooling operation.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string, one of `channels_last` (default) or
        `channels_first`. The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch, length, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, length)`.
      name: A string, the name of the layer.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.MaxPooling1D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     pooling = tf.compat.v1.layers.MaxPooling1D(pool_size=2, strides=2)
    ```

    After:

    ```python
     pooling = tf.keras.layers.MaxPooling1D(pool_size=2, strides=2)
    ```
    @end_compatibility
    """

    def __init__(
        self,
        pool_size,
        strides,
        padding="valid",
        data_format="channels_last",
        name=None,
        **kwargs
    ):
        if strides is None:
            raise ValueError("Argument `strides` must not be None.")
        super().__init__(
            pool_size=pool_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            name=name,
            **kwargs
        )


@keras_export(v1=["keras.__internal__.legacy.layers.max_pooling1d"])
@tf_export(v1=["layers.max_pooling1d"])
def max_pooling1d(
    inputs,
    pool_size,
    strides,
    padding="valid",
    data_format="channels_last",
    name=None,
):
    """Max Pooling layer for 1D inputs.

    Args:
      inputs: The tensor over which to pool. Must have rank 3.
      pool_size: An integer or tuple/list of a single integer,
        representing the size of the pooling window.
      strides: An integer or tuple/list of a single integer, specifying the
        strides of the pooling operation.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string, one of `channels_last` (default) or
        `channels_first`. The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch, length, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, length)`.
      name: A string, the name of the layer.

    Returns:
      The output tensor, of rank 3.

    Raises:
      ValueError: if eager execution is enabled.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.MaxPooling1D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     y = tf.compat.v1.layers.max_pooling1d(x, pool_size=2, strides=2)
    ```

    After:

    To migrate code using TF1 functional layers use the [Keras Functional API]
    (https://www.tensorflow.org/guide/keras/functional):

    ```python
     x = tf.keras.Input((28, 28, 1))
     y = tf.keras.layers.MaxPooling1D(pool_size=2, strides=2)(x)
     model = tf.keras.Model(x, y)
    ```
    @end_compatibility
    """
    warnings.warn(
        "`tf.layers.max_pooling1d` is deprecated and "
        "will be removed in a future version. "
        "Please use `tf.keras.layers.MaxPooling1D` instead.",
        stacklevel=2,
    )
    layer = MaxPooling1D(
        pool_size=pool_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        name=name,
    )
    return layer(inputs)


@keras_export(v1=["keras.__internal__.legacy.layers.AveragePooling2D"])
@tf_export(v1=["layers.AveragePooling2D"])
class AveragePooling2D(keras_layers.AveragePooling2D, base.Layer):
    """Average pooling layer for 2D inputs (e.g. images).

    Args:
      pool_size: An integer or tuple/list of 2 integers: (pool_height,
        pool_width) specifying the size of the pooling window.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      strides: An integer or tuple/list of 2 integers,
        specifying the strides of the pooling operation.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape
        `(batch, height, width, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, height, width)`.
      name: A string, the name of the layer.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.AveragePooling2D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     pooling = tf.compat.v1.layers.AveragePooling2D(pool_size=2, strides=2)
    ```

    After:

    ```python
     pooling = tf.keras.layers.AveragePooling2D(pool_size=2, strides=2)
    ```
    @end_compatibility
    """

    def __init__(
        self,
        pool_size,
        strides,
        padding="valid",
        data_format="channels_last",
        name=None,
        **kwargs
    ):
        if strides is None:
            raise ValueError("Argument `strides` must not be None.")
        super().__init__(
            pool_size=pool_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            name=name,
            **kwargs
        )


@keras_export(v1=["keras.__internal__.legacy.layers.average_pooling2d"])
@tf_export(v1=["layers.average_pooling2d"])
def average_pooling2d(
    inputs,
    pool_size,
    strides,
    padding="valid",
    data_format="channels_last",
    name=None,
):
    """Average pooling layer for 2D inputs (e.g. images).

    Args:
      inputs: The tensor over which to pool. Must have rank 4.
      pool_size: An integer or tuple/list of 2 integers: (pool_height,
        pool_width) specifying the size of the pooling window.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      strides: An integer or tuple/list of 2 integers,
        specifying the strides of the pooling operation.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape
        `(batch, height, width, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, height, width)`.
      name: A string, the name of the layer.

    Returns:
      Output tensor.

    Raises:
      ValueError: if eager execution is enabled.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.AveragePooling2D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     y = tf.compat.v1.layers.average_pooling2d(x, pool_size=2, strides=2)
    ```

    After:

    To migrate code using TF1 functional layers use the [Keras Functional API]
    (https://www.tensorflow.org/guide/keras/functional):

    ```python
     x = tf.keras.Input((28, 28, 1))
     y = tf.keras.layers.AveragePooling2D(pool_size=2, strides=2)(x)
     model = tf.keras.Model(x, y)
    ```
    @end_compatibility
    """
    warnings.warn(
        "`tf.layers.average_pooling2d` is deprecated and "
        "will be removed in a future version. "
        "Please use `tf.keras.layers.AveragePooling2D` instead.",
        stacklevel=2,
    )
    layer = AveragePooling2D(
        pool_size=pool_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        name=name,
    )
    return layer(inputs)


@keras_export(v1=["keras.__internal__.legacy.layers.MaxPooling2D"])
@tf_export(v1=["layers.MaxPooling2D"])
class MaxPooling2D(keras_layers.MaxPooling2D, base.Layer):
    """Max pooling layer for 2D inputs (e.g. images).

    Args:
      pool_size: An integer or tuple/list of 2 integers: (pool_height,
        pool_width) specifying the size of the pooling window.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      strides: An integer or tuple/list of 2 integers,
        specifying the strides of the pooling operation.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape
        `(batch, height, width, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, height, width)`.
      name: A string, the name of the layer.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.MaxPooling2D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     pooling = tf.compat.v1.layers.MaxPooling2D(pool_size=2, strides=2)
    ```

    After:

    ```python
     pooling = tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)
    ```
    @end_compatibility
    """

    def __init__(
        self,
        pool_size,
        strides,
        padding="valid",
        data_format="channels_last",
        name=None,
        **kwargs
    ):
        if strides is None:
            raise ValueError("Argument `strides` must not be None.")
        super().__init__(
            pool_size=pool_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            name=name,
            **kwargs
        )


@keras_export(v1=["keras.__internal__.legacy.layers.max_pooling2d"])
@tf_export(v1=["layers.max_pooling2d"])
def max_pooling2d(
    inputs,
    pool_size,
    strides,
    padding="valid",
    data_format="channels_last",
    name=None,
):
    """Max pooling layer for 2D inputs (e.g. images).

    Args:
      inputs: The tensor over which to pool. Must have rank 4.
      pool_size: An integer or tuple/list of 2 integers: (pool_height,
        pool_width) specifying the size of the pooling window.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      strides: An integer or tuple/list of 2 integers,
        specifying the strides of the pooling operation.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape
        `(batch, height, width, channels)` while `channels_first` corresponds to
        inputs with shape `(batch, channels, height, width)`.
      name: A string, the name of the layer.

    Returns:
      Output tensor.

    Raises:
      ValueError: if eager execution is enabled.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.MaxPooling2D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     y = tf.compat.v1.layers.max_pooling2d(x, pool_size=2, strides=2)
    ```

    After:

    To migrate code using TF1 functional layers use the [Keras Functional API]
    (https://www.tensorflow.org/guide/keras/functional):

    ```python
     x = tf.keras.Input((28, 28, 1))
     y = tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)(x)
     model = tf.keras.Model(x, y)
    ```
    @end_compatibility
    """
    warnings.warn(
        "`tf.layers.max_pooling2d` is deprecated and "
        "will be removed in a future version. "
        "Please use `tf.keras.layers.MaxPooling2D` instead.",
        stacklevel=2,
    )
    layer = MaxPooling2D(
        pool_size=pool_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        name=name,
    )
    return layer(inputs)


@keras_export(v1=["keras.__internal__.legacy.layers.AveragePooling3D"])
@tf_export(v1=["layers.AveragePooling3D"])
class AveragePooling3D(keras_layers.AveragePooling3D, base.Layer):
    """Average pooling layer for 3D inputs (e.g. volumes).

    Args:
      pool_size: An integer or tuple/list of 3 integers:
        (pool_depth, pool_height, pool_width)
        specifying the size of the pooling window.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      strides: An integer or tuple/list of 3 integers,
        specifying the strides of the pooling operation.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape
        `(batch, depth, height, width, channels)` while `channels_first`
        corresponds to inputs with shape
        `(batch, channels, depth, height, width)`.
      name: A string, the name of the layer.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.AveragePooling3D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     pooling = tf.compat.v1.layers.AveragePooling3D(pool_size=2, strides=2)
    ```

    After:

    ```python
     pooling = tf.keras.layers.AveragePooling3D(pool_size=2, strides=2)
    ```
    @end_compatibility
    """

    def __init__(
        self,
        pool_size,
        strides,
        padding="valid",
        data_format="channels_last",
        name=None,
        **kwargs
    ):
        if strides is None:
            raise ValueError("Argument `strides` must not be None.")
        super().__init__(
            pool_size=pool_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            name=name,
            **kwargs
        )


@keras_export(v1=["keras.__internal__.legacy.layers.average_pooling3d"])
@tf_export(v1=["layers.average_pooling3d"])
def average_pooling3d(
    inputs,
    pool_size,
    strides,
    padding="valid",
    data_format="channels_last",
    name=None,
):
    """Average pooling layer for 3D inputs (e.g. volumes).

    Args:
      inputs: The tensor over which to pool. Must have rank 5.
      pool_size: An integer or tuple/list of 3 integers:
        (pool_depth, pool_height, pool_width)
        specifying the size of the pooling window.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      strides: An integer or tuple/list of 3 integers,
        specifying the strides of the pooling operation.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape
        `(batch, depth, height, width, channels)` while `channels_first`
        corresponds to inputs with shape
        `(batch, channels, depth, height, width)`.
      name: A string, the name of the layer.

    Returns:
      Output tensor.

    Raises:
      ValueError: if eager execution is enabled.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.AveragePooling3D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     y = tf.compat.v1.layers.average_pooling3d(x, pool_size=2, strides=2)
    ```

    After:

    To migrate code using TF1 functional layers use the [Keras Functional API]
    (https://www.tensorflow.org/guide/keras/functional):

    ```python
     x = tf.keras.Input((28, 28, 1))
     y = tf.keras.layers.AveragePooling3D(pool_size=2, strides=2)(x)
     model = tf.keras.Model(x, y)
    ```
    @end_compatibility
    """
    warnings.warn(
        "`tf.layers.average_pooling3d` is deprecated and "
        "will be removed in a future version. "
        "Please use `tf.keras.layers.AveragePooling3D` instead.",
        stacklevel=2,
    )
    layer = AveragePooling3D(
        pool_size=pool_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        name=name,
    )
    return layer(inputs)


@keras_export(v1=["keras.__internal__.legacy.layers.MaxPooling3D"])
@tf_export(v1=["layers.MaxPooling3D"])
class MaxPooling3D(keras_layers.MaxPooling3D, base.Layer):
    """Max pooling layer for 3D inputs (e.g. volumes).

    Args:
      pool_size: An integer or tuple/list of 3 integers:
        (pool_depth, pool_height, pool_width)
        specifying the size of the pooling window.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      strides: An integer or tuple/list of 3 integers,
        specifying the strides of the pooling operation.
        Can be a single integer to specify the same value for
        all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape
        `(batch, depth, height, width, channels)` while `channels_first`
        corresponds to inputs with shape
        `(batch, channels, depth, height, width)`.
      name: A string, the name of the layer.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.MaxPooling3D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     pooling = tf.compat.v1.layers.MaxPooling3D(pool_size=2, strides=2)
    ```

    After:

    ```python
     pooling = tf.keras.layers.MaxPooling3D(pool_size=2, strides=2)
    ```
    @end_compatibility
    """

    def __init__(
        self,
        pool_size,
        strides,
        padding="valid",
        data_format="channels_last",
        name=None,
        **kwargs
    ):
        if strides is None:
            raise ValueError("Argument `strides` must not be None.")
        super().__init__(
            pool_size=pool_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            name=name,
            **kwargs
        )


@keras_export(v1=["keras.__internal__.legacy.layers.max_pooling3d"])
@tf_export(v1=["layers.max_pooling3d"])
def max_pooling3d(
    inputs,
    pool_size,
    strides,
    padding="valid",
    data_format="channels_last",
    name=None,
):
    """Max pooling layer for 3D inputs (e.g.

    volumes).

    Args:
      inputs: The tensor over which to pool. Must have rank 5.
      pool_size: An integer or tuple/list of 3 integers: (pool_depth,
        pool_height, pool_width) specifying the size of the pooling window. Can
        be a single integer to specify the same value for all spatial
        dimensions.
      strides: An integer or tuple/list of 3 integers, specifying the strides of
        the pooling operation. Can be a single integer to specify the same value
        for all spatial dimensions.
      padding: A string. The padding method, either 'valid' or 'same'.
        Case-insensitive.
      data_format: A string. The ordering of the dimensions in the inputs.
        `channels_last` (default) and `channels_first` are supported.
        `channels_last` corresponds to inputs with shape `(batch, depth, height,
        width, channels)` while `channels_first` corresponds to inputs with
        shape `(batch, channels, depth, height, width)`.
      name: A string, the name of the layer.

    Returns:
      Output tensor.

    Raises:
      ValueError: if eager execution is enabled.


    @compatibility(TF2)
    This API is a legacy api that is only compatible with eager execution and
    `tf.function` if you combine it with
    `tf.compat.v1.keras.utils.track_tf1_style_variables`

    Please refer to [tf.layers model mapping section of the migration guide]
    (https://www.tensorflow.org/guide/migrate/model_mapping)
    to learn how to use your TensorFlow v1 model in TF2 with Keras.

    The corresponding TensorFlow v2 layer is
    `tf.keras.layers.MaxPooling3D`.


    #### Structural Mapping to Native TF2

    None of the supported arguments have changed name.

    Before:

    ```python
     y = tf.compat.v1.layers.max_pooling3d(x, pool_size=2, strides=2)
    ```

    After:

    To migrate code using TF1 functional layers use the [Keras Functional API]
    (https://www.tensorflow.org/guide/keras/functional):

    ```python
     x = tf.keras.Input((28, 28, 1))
     y = tf.keras.layers.MaxPooling3D(pool_size=2, strides=2)(x)
     model = tf.keras.Model(x, y)
    ```
    @end_compatibility
    """
    warnings.warn(
        "`tf.layers.max_pooling3d` is deprecated and "
        "will be removed in a future version. "
        "Please use `tf.keras.layers.MaxPooling3D` instead.",
        stacklevel=2,
    )
    layer = MaxPooling3D(
        pool_size=pool_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        name=name,
    )
    return layer(inputs)


# Aliases

AvgPool2D = AveragePooling2D
MaxPool2D = MaxPooling2D
max_pool2d = max_pooling2d
avg_pool2d = average_pooling2d
