a
    Sicw                     @   sR   d Z ddlZddlmZ ddlmZ ddlmZ eddG dd	 d	eZeZ	dS )
zAverage pooling 1D layer.    N)backend)	Pooling1D)keras_exportzkeras.layers.AveragePooling1Dzkeras.layers.AvgPool1Dc                       s"   e Zd ZdZd fdd	Z  ZS )	AveragePooling1Da  Average pooling for temporal data.

    Downsamples the input representation by taking the average value over the
    window defined by `pool_size`. The window is shifted by `strides`.  The
    resulting output when using "valid" padding option has a shape of:
    `output_shape = (input_shape - pool_size + 1) / strides)`

    The resulting output shape when using the "same" padding option is:
    `output_shape = input_shape / strides`

    For example, for strides=1 and padding="valid":

    >>> x = tf.constant([1., 2., 3., 4., 5.])
    >>> x = tf.reshape(x, [1, 5, 1])
    >>> x
    <tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
      array([[[1.],
              [2.],
              [3.],
              [4.],
              [5.]], dtype=float32)>
    >>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
    ...    strides=1, padding='valid')
    >>> avg_pool_1d(x)
    <tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=
    array([[[1.5],
            [2.5],
            [3.5],
            [4.5]]], dtype=float32)>

    For example, for strides=2 and padding="valid":

    >>> x = tf.constant([1., 2., 3., 4., 5.])
    >>> x = tf.reshape(x, [1, 5, 1])
    >>> x
    <tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
      array([[[1.],
              [2.],
              [3.],
              [4.],
              [5.]], dtype=float32)>
    >>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
    ...    strides=2, padding='valid')
    >>> avg_pool_1d(x)
    <tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=
    array([[[1.5],
            [3.5]]], dtype=float32)>

    For example, for strides=1 and padding="same":

    >>> x = tf.constant([1., 2., 3., 4., 5.])
    >>> x = tf.reshape(x, [1, 5, 1])
    >>> x
    <tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
      array([[[1.],
              [2.],
              [3.],
              [4.],
              [5.]], dtype=float32)>
    >>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
    ...    strides=1, padding='same')
    >>> avg_pool_1d(x)
    <tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
    array([[[1.5],
            [2.5],
            [3.5],
            [4.5],
            [5.]]], dtype=float32)>

    Args:
      pool_size: Integer, size of the average pooling windows.
      strides: Integer, or None. Factor by which to downscale.
        E.g. 2 will halve the input.
        If None, it will default to `pool_size`.
      padding: One of `"valid"` or `"same"` (case-insensitive).
        `"valid"` means no padding. `"same"` results in padding evenly to
        the left/right or up/down of the input such that output has the same
        height/width dimension as the input.
      data_format: A string,
        one of `channels_last` (default) or `channels_first`.
        The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch, steps, features)` while `channels_first`
        corresponds to inputs with shape
        `(batch, features, steps)`.

    Input shape:
      - If `data_format='channels_last'`:
        3D tensor with shape `(batch_size, steps, features)`.
      - If `data_format='channels_first'`:
        3D tensor with shape `(batch_size, features, steps)`.

    Output shape:
      - If `data_format='channels_last'`:
        3D tensor with shape `(batch_size, downsampled_steps, features)`.
      - If `data_format='channels_first'`:
        3D tensor with shape `(batch_size, features, downsampled_steps)`.
       Nvalidchannels_lastc                    s.   t  jtjtjddf||||d| d S )Navg)	pool_mode)	pool_sizestridespaddingdata_format)super__init__	functoolspartialr   pool2d)selfr   r   r   r   kwargs	__class__ b/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/layers/pooling/average_pooling1d.pyr      s    zAveragePooling1D.__init__)r   Nr   r   )__name__
__module____qualname____doc__r   __classcell__r   r   r   r   r      s   e    r   )
r   r   kerasr   Z#keras.layers.pooling.base_pooling1dr    tensorflow.python.util.tf_exportr   r   	AvgPool1Dr   r   r   r   <module>   s   x