a
    SicM!                     @   sJ   d Z ddlm  mZ ddlmZ ddlmZ edG dd deZ	dS )zAttention layer that can be used in sequence DNN/CNN models.

This file follows the terminology of https://arxiv.org/abs/1706.03762 Figure 2.
Attention is formed by three tensors: Query, Key and Value.
    N)BaseDenseAttention)keras_exportzkeras.layers.Attentionc                       sB   e Zd ZdZd fdd	Z fddZdd	 Z fd
dZ  ZS )	Attentiona  Dot-product attention layer, a.k.a. Luong-style attention.

    Inputs are `query` tensor of shape `[batch_size, Tq, dim]`, `value` tensor
    of shape `[batch_size, Tv, dim]` and `key` tensor of shape
    `[batch_size, Tv, dim]`. The calculation follows the steps:

    1. Calculate scores with shape `[batch_size, Tq, Tv]` as a `query`-`key` dot
       product: `scores = tf.matmul(query, key, transpose_b=True)`.
    2. Use scores to calculate a distribution with shape
       `[batch_size, Tq, Tv]`: `distribution = tf.nn.softmax(scores)`.
    3. Use `distribution` to create a linear combination of `value` with
       shape `[batch_size, Tq, dim]`:
       `return tf.matmul(distribution, value)`.

    Args:
      use_scale: If `True`, will create a scalar variable to scale the attention
        scores.
      dropout: Float between 0 and 1. Fraction of the units to drop for the
        attention scores. Defaults to 0.0.
      score_mode: Function to use to compute attention scores, one of
        `{"dot", "concat"}`. `"dot"` refers to the dot product between the query
        and key vectors. `"concat"` refers to the hyperbolic tangent of the
        concatenation of the query and key vectors.

    Call Args:

      inputs: List of the following tensors:
        * query: Query `Tensor` of shape `[batch_size, Tq, dim]`.
        * value: Value `Tensor` of shape `[batch_size, Tv, dim]`.
        * key: Optional key `Tensor` of shape `[batch_size, Tv, dim]`. If not
          given, will use `value` for both `key` and `value`, which is the
          most common case.
      mask: List of the following tensors:
        * query_mask: A boolean mask `Tensor` of shape `[batch_size, Tq]`.
          If given, the output will be zero at the positions where
          `mask==False`.
        * value_mask: A boolean mask `Tensor` of shape `[batch_size, Tv]`.
          If given, will apply the mask such that values at positions where
          `mask==False` do not contribute to the result.
      return_attention_scores: bool, it `True`, returns the attention scores
        (after masking and softmax) as an additional output argument.
      training: Python boolean indicating whether the layer should behave in
        training mode (adding dropout) or in inference mode (no dropout).
      use_causal_mask: Boolean. Set to `True` for decoder self-attention. Adds a
        mask such that position `i` cannot attend to positions `j > i`. This
        prevents the flow of information from the future towards the past.
        Defaults to `False`.

    Output:

      Attention outputs of shape `[batch_size, Tq, dim]`.
      [Optional] Attention scores after masking and softmax with shape
        `[batch_size, Tq, Tv]`.

    The meaning of `query`, `value` and `key` depend on the application. In the
    case of text similarity, for example, `query` is the sequence embeddings of
    the first piece of text and `value` is the sequence embeddings of the second
    piece of text. `key` is usually the same tensor as `value`.

    Here is a code example for using `Attention` in a CNN+Attention network:

    ```python
    # Variable-length int sequences.
    query_input = tf.keras.Input(shape=(None,), dtype='int32')
    value_input = tf.keras.Input(shape=(None,), dtype='int32')

    # Embedding lookup.
    token_embedding = tf.keras.layers.Embedding(input_dim=1000, output_dim=64)
    # Query embeddings of shape [batch_size, Tq, dimension].
    query_embeddings = token_embedding(query_input)
    # Value embeddings of shape [batch_size, Tv, dimension].
    value_embeddings = token_embedding(value_input)

    # CNN layer.
    cnn_layer = tf.keras.layers.Conv1D(
        filters=100,
        kernel_size=4,
        # Use 'same' padding so outputs have the same shape as inputs.
        padding='same')
    # Query encoding of shape [batch_size, Tq, filters].
    query_seq_encoding = cnn_layer(query_embeddings)
    # Value encoding of shape [batch_size, Tv, filters].
    value_seq_encoding = cnn_layer(value_embeddings)

    # Query-value attention of shape [batch_size, Tq, filters].
    query_value_attention_seq = tf.keras.layers.Attention()(
        [query_seq_encoding, value_seq_encoding])

    # Reduce over the sequence axis to produce encodings of shape
    # [batch_size, filters].
    query_encoding = tf.keras.layers.GlobalAveragePooling1D()(
        query_seq_encoding)
    query_value_attention = tf.keras.layers.GlobalAveragePooling1D()(
        query_value_attention_seq)

    # Concatenate query and document encodings to produce a DNN input layer.
    input_layer = tf.keras.layers.Concatenate()(
        [query_encoding, query_value_attention])

    # Add DNN layers, and create Model.
    # ...
    ```
    Fdotc                    s<   t  jf i | || _|| _| jdvr8td| dd S )N)r   concatzReceived: score_mode=z*. Acceptable values are: ["dot", "concat"])super__init__	use_scale
score_mode
ValueError)selfr	   r
   kwargs	__class__ \/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/layers/attention/attention.pyr      s    

zAttention.__init__c                    s`   | j r | jddd| jdd| _nd| _| jdkrJ| jddd| jdd| _nd| _t | dS )	zNCreates variable when `use_scale` is True or `score_mode` is
        `concat`.scaler   onesT)nameshapeinitializerdtype	trainableNr   concat_score_weight)r	   
add_weightr   r   r
   r   r   build)r   input_shaper   r   r   r      s&    


zAttention.buildc                 C   s   | j dkr0tj||dd}| jdur|| j9 }nt| j dkrtj|dd}tj|dd}| jdur| jtjt| j||  d	d }n| jtjt|| d	d }|S )
a  Calculates attention scores as a query-key dot product.

        Args:
          query: Query tensor of shape `[batch_size, Tq, dim]`.
          key: Key tensor of shape `[batch_size, Tv, dim]`.
        Returns:
          Tensor of shape `[batch_size, Tq, Tv]`.
        r   T)transpose_bNr   )axis)r
   tfmatmulr   expand_dimsr   
reduce_sumtanh)r   querykeyscores
q_reshaped
k_reshapedr   r   r   _calculate_scores   s    	




zAttention._calculate_scoresc                    s4   | j | jd}t  }tt| t|  S )N)r	   r
   )r	   r
   r   
get_configdictlistitems)r   configbase_configr   r   r   r-      s    
zAttention.get_config)Fr   )	__name__
__module____qualname____doc__r   r   r,   r-   __classcell__r   r   r   r   r      s
   h
r   )
r6   tensorflow.compat.v2compatv2r"   +keras.layers.attention.base_dense_attentionr    tensorflow.python.util.tf_exportr   r   r   r   r   r   <module>   s
   