a
    Sic+                     @   sH   d Z ddlZddlZddlZddlmZ ddlmZ eddd Z	dS )zFashion-MNIST dataset.    N)get_file)keras_exportz&keras.datasets.fashion_mnist.load_datac                  C   s  t jdd} d}g d}g }|D ]}|t||| | d q"t|d d&}tj|	 tj
dd	}W d
   n1 s|0    Y  t|d d4}tj|	 tj
dd	t|dd}W d
   n1 s0    Y  t|d d&}tj|	 tj
dd	}	W d
   n1 s0    Y  t|d d4}tj|	 tj
dd	t|	dd}
W d
   n1 sn0    Y  ||f|
|	ffS )a^  Loads the Fashion-MNIST dataset.

    This is a dataset of 60,000 28x28 grayscale images of 10 fashion categories,
    along with a test set of 10,000 images. This dataset can be used as
    a drop-in replacement for MNIST.

    The classes are:

    | Label | Description |
    |:-----:|-------------|
    |   0   | T-shirt/top |
    |   1   | Trouser     |
    |   2   | Pullover    |
    |   3   | Dress       |
    |   4   | Coat        |
    |   5   | Sandal      |
    |   6   | Shirt       |
    |   7   | Sneaker     |
    |   8   | Bag         |
    |   9   | Ankle boot  |

    Returns:
      Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **x_train**: uint8 NumPy array of grayscale image data with shapes
      `(60000, 28, 28)`, containing the training data.

    **y_train**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(60000,)` for the training data.

    **x_test**: uint8 NumPy array of grayscale image data with shapes
      (10000, 28, 28), containing the test data.

    **y_test**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(10000,)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
    assert x_train.shape == (60000, 28, 28)
    assert x_test.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)
    assert y_test.shape == (10000,)
    ```

    License:
      The copyright for Fashion-MNIST is held by Zalando SE.
      Fashion-MNIST is licensed under the [MIT license](
      https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE).

    datasetszfashion-mnistz<https://storage.googleapis.com/tensorflow/tf-keras-datasets/)ztrain-labels-idx1-ubyte.gzztrain-images-idx3-ubyte.gzzt10k-labels-idx1-ubyte.gzzt10k-images-idx3-ubyte.gz)origincache_subdirr   rb   )offsetN               )ospathjoinappendr   gzipopennp
frombufferreaduint8reshapelen)dirnamebasefilespathsfnameZlbpathy_trainZimgpathx_trainy_testx_test r$   X/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/datasets/fashion_mnist.py	load_data   s&    64
"6
$r&   )
__doc__r   r   numpyr   keras.utils.data_utilsr    tensorflow.python.util.tf_exportr   r&   r$   r$   r$   r%   <module>   s   