a
    Sic                     @   sX   d Z ddlZddlZddlmZ ddlmZ ddlm	Z	 ddl
mZ eddd	 ZdS )
z,CIFAR10 small images classification dataset.    N)backend)
load_batch)get_file)keras_exportz keras.datasets.cifar10.load_datac            
   	   C   sH  d} d}t | |ddd}d}tj|dddfd	d
}tj|fd	d
}tddD ]b}tj|dt| }t|\||d d |d ddddddf< ||d d |d < qLtj|d}t|\}}	t	|t
|df}t	|	t
|	df}	t dkr |dddd}|dddd}||j}|	|j}	||f||	ffS )a  Loads the CIFAR10 dataset.

    This is a dataset of 50,000 32x32 color training images and 10,000 test
    images, labeled over 10 categories. See more info at the
    [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html).

    The classes are:

    | Label | Description |
    |:-----:|-------------|
    |   0   | airplane    |
    |   1   | automobile  |
    |   2   | bird        |
    |   3   | cat         |
    |   4   | deer        |
    |   5   | dog         |
    |   6   | frog        |
    |   7   | horse       |
    |   8   | ship        |
    |   9   | truck       |

    Returns:
      Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **x_train**: uint8 NumPy array of grayscale image data with shapes
      `(50000, 32, 32, 3)`, containing the training data. Pixel values range
      from 0 to 255.

    **y_train**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(50000, 1)` for the training data.

    **x_test**: uint8 NumPy array of grayscale image data with shapes
      `(10000, 32, 32, 3)`, containing the test data. Pixel values range
      from 0 to 255.

    **y_test**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(10000, 1)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
    assert x_train.shape == (50000, 32, 32, 3)
    assert x_test.shape == (10000, 32, 32, 3)
    assert y_train.shape == (50000, 1)
    assert y_test.shape == (10000, 1)
    ```
    zcifar-10-batches-pyz7https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gzTZ@6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce)originuntar	file_hashiP         uint8)dtype      Zdata_batch_i'  NZ
test_batchchannels_lastr      )r   npemptyrangeospathjoinstrr   reshapelenr   image_data_format	transposeastyper   )
dirnamer   r   Znum_train_samplesx_trainy_trainifpathx_testy_test r$   R/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/datasets/cifar10.py	load_data   s8    2*r&   )__doc__r   numpyr   kerasr   Zkeras.datasets.cifarr   keras.utils.data_utilsr    tensorflow.python.util.tf_exportr   r&   r$   r$   r$   r%   <module>   s   