a
    Sic5                     @   s   d Z ddlm  mZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZ dd	lmZ d
ZdZe ZedddddZeddddZeddddZejjdejejde_ ejj e_ dS ) a  Xception V1 model for Keras.

On ImageNet, this model gets to a top-1 validation accuracy of 0.790
and a top-5 validation accuracy of 0.945.

Reference:
  - [Xception: Deep Learning with Depthwise Separable Convolutions](
      https://arxiv.org/abs/1610.02357) (CVPR 2017)
    N)backend)imagenet_utils)training)VersionAwareLayers)
data_utils)layer_utils)keras_exportzthttps://storage.googleapis.com/tensorflow/keras-applications/xception/xception_weights_tf_dim_ordering_tf_kernels.h5zzhttps://storage.googleapis.com/tensorflow/keras-applications/xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5z$keras.applications.xception.Xceptionzkeras.applications.XceptionTimagenet  softmaxc                 C   s~  |dv st jj|std|dkr:| r:|dkr:tdtj|ddt | |d}|d	u rjt	j
|d
}nt|st	j
||d}n|}t dkrdnd}t	jdddddd|}	t	j|dd|	}	t	jddd|	}	t	jddddd|	}	t	j|dd|	}	t	jddd|	}	t	jdd dd!dd"|	}
t	j|d#|
}
t	jddd!dd$d%|	}	t	j|d&d|	}	t	jdd'd|	}	t	jddd!dd(d%|	}	t	j|d)d|	}	t	jddd!d*d+|	}	t	|	|
g}	t	jd,d dd!dd"|	}
t	j|d#|
}
t	jdd-d|	}	t	jd,dd!dd.d%|	}	t	j|d/d|	}	t	jdd0d|	}	t	jd,dd!dd1d%|	}	t	j|d2d|	}	t	jddd!d3d+|	}	t	|	|
g}	t	jd4d dd!dd"|	}
t	j|d#|
}
t	jdd5d|	}	t	jd4dd!dd6d%|	}	t	j|d7d|	}	t	jdd8d|	}	t	jd4dd!dd9d%|	}	t	j|d:d|	}	t	jddd!d;d+|	}	t	|	|
g}	td<D ] }|	}
d=t|d>  }t	jd|d? d|	}	t	jd4dd!d|d@ d%|	}	t	j||dA d|	}	t	jd|dB d|	}	t	jd4dd!d|dC d%|	}	t	j||dD d|	}	t	jd|dE d|	}	t	jd4dd!d|dF d%|	}	t	j||dG d|	}	t	|	|
g}	qTt	jdHd dd!dd"|	}
t	j|d#|
}
t	jddId|	}	t	jd4dd!ddJd%|	}	t	j|dKd|	}	t	jddLd|	}	t	jdHdd!ddMd%|	}	t	j|dNd|	}	t	jddd!dOd+|	}	t	|	|
g}	t	jdPdd!ddQd%|	}	t	j|dRd|	}	t	jddSd|	}	t	jdTdd!ddUd%|	}	t	j|dVd|	}	t	jddWd|	}	| rt	jdXd|	}	t|| t	j||dYdZ|	}	n.|d[krt	 |	}	n|d\krt	 |	}	|d	urt|}n|}tj||	d]d}|dkrf| rHtjd^td_d`da}ntjdbtd_dcda}| | n|d	urz| | |S )daU
  Instantiates the Xception architecture.

    Reference:
    - [Xception: Deep Learning with Depthwise Separable Convolutions](
        https://arxiv.org/abs/1610.02357) (CVPR 2017)

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    The default input image size for this model is 299x299.

    Note: each Keras Application expects a specific kind of input preprocessing.
    For Xception, call `tf.keras.applications.xception.preprocess_input` on your
    inputs before passing them to the model.
    `xception.preprocess_input` will scale input pixels between -1 and 1.

    Args:
      include_top: whether to include the fully-connected
        layer at the top of the network.
      weights: one of `None` (random initialization),
        'imagenet' (pre-training on ImageNet),
        or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(299, 299, 3)`.
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 71.
        E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True,
        and if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.

    Returns:
      A `keras.Model` instance.
    >   Nr	   zThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded.r	   r
   zWIf using `weights` as `"imagenet"` with `include_top` as true, `classes` should be 1000i+  G   )default_sizemin_sizedata_formatrequire_flattenweightsN)shape)tensorr   channels_first       )   r   )   r   Fblock1_conv1)stridesuse_biasnameZblock1_conv1_bn)axisr   reluZblock1_conv1_act)r   @   block1_conv2)r   r   Zblock1_conv2_bnZblock1_conv2_act   )r   r   same)r   paddingr   )r   Zblock2_sepconv1)r$   r   r   Zblock2_sepconv1_bnZblock2_sepconv2_actZblock2_sepconv2Zblock2_sepconv2_bnblock2_pool)r   r$   r      Zblock3_sepconv1_actZblock3_sepconv1Zblock3_sepconv1_bnZblock3_sepconv2_actZblock3_sepconv2Zblock3_sepconv2_bnblock3_pooli  Zblock4_sepconv1_actZblock4_sepconv1Zblock4_sepconv1_bnZblock4_sepconv2_actZblock4_sepconv2Zblock4_sepconv2_bnblock4_pool   block   Z_sepconv1_actZ	_sepconv1Z_sepconv1_bnZ_sepconv2_actZ	_sepconv2Z_sepconv2_bnZ_sepconv3_actZ	_sepconv3Z_sepconv3_bni   Zblock13_sepconv1_actZblock13_sepconv1Zblock13_sepconv1_bnZblock13_sepconv2_actZblock13_sepconv2Zblock13_sepconv2_bnZblock13_pooli   Zblock14_sepconv1Zblock14_sepconv1_bnZblock14_sepconv1_acti   Zblock14_sepconv2Zblock14_sepconv2_bnZblock14_sepconv2_actavg_poolpredictions)
activationr   avgmaxxceptionz.xception_weights_tf_dim_ordering_tf_kernels.h5modelsZ 0a58e3b7378bc2990ea3b43d5981f1f6)cache_subdir	file_hashz4xception_weights_tf_dim_ordering_tf_kernels_notop.h5Z b0042744bf5b25fce3cb969f33bebb97)!tfiogfileexists
ValueErrorr   obtain_input_shaper   image_data_formatlayersInputis_keras_tensorConv2DBatchNormalization
ActivationSeparableConv2DMaxPooling2DaddrangestrGlobalAveragePooling2Dvalidate_activationDenseGlobalMaxPooling2Dr   get_source_inputsr   Modelr   get_fileTF_WEIGHTS_PATHTF_WEIGHTS_PATH_NO_TOPload_weights)include_topr   input_tensorinput_shapepoolingclassesclassifier_activation	img_inputchannel_axisxZresidualiprefixinputsmodelweights_path r_   W/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/applications/xception.pyXception2   s   G	





















ra   z,keras.applications.xception.preprocess_inputc                 C   s   t j| |ddS )Nr5   )r   mode)r   preprocess_input)rY   r   r_   r_   r`   rc   k  s    rc   z.keras.applications.xception.decode_predictionsr+   c                 C   s   t j| |dS )N)top)r   decode_predictions)predsrd   r_   r_   r`   re   r  s    re    )rb   reterror)Tr	   NNNr
   r   )N)r+   )__doc__Ztensorflow.compat.v2compatv2r5   kerasr   Zkeras.applicationsr   keras.enginer   keras.layersr   keras.utilsr   r    tensorflow.python.util.tf_exportr   rN   rO   r<   ra   rc   re   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_TFPREPROCESS_INPUT_ERROR_DOCr_   r_   r_   r`   <module>   sH   
         8