a
    Sic$(                     @   s   d Z ddlm  mZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZ dd	lmZ d
ZdZe ZedddddZeddddZeddddZejjdejejde_ ejj e_ dS ) zVGG19 model for Keras.

Reference:
  - [Very Deep Convolutional Networks for Large-Scale Image Recognition](
      https://arxiv.org/abs/1409.1556) (ICLR 2015)
    N)backend)imagenet_utils)training)VersionAwareLayers)
data_utils)layer_utils)keras_exportznhttps://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5zthttps://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5zkeras.applications.vgg19.VGG19zkeras.applications.VGG19Timagenet  softmaxc                 C   s  |dv s&t jj|s&td| d|dkrJ| rJ|dkrJtd| dtj|ddt | |d	}|d
u rzt	j
|d}nt|st	j
||d}n|}t	jdddddd|}t	jdddddd|}t	jdddd|}t	jdddddd|}t	jdddddd|}t	jdddd|}t	jdddddd|}t	jdddddd|}t	jdddddd|}t	jdddddd|}t	jddd d|}t	jd!dddd"d|}t	jd!dddd#d|}t	jd!dddd$d|}t	jd!dddd%d|}t	jddd&d|}t	jd!dddd'd|}t	jd!dddd(d|}t	jd!dddd)d|}t	jd!dddd*d|}t	jddd+d|}| rt	jd,d-|}t	jd.dd/d0|}t	jd.dd1d0|}t|| t	j||d2d0|}n.|d3krt	 |}n|d4kr
t	 |}|d
ur t|}	n|}	tj|	|d5d-}
|dkrv| rXtjd6td7d8d9}ntjd:td7d;d9}|
| n|d
ur|
| |
S )<a%  Instantiates the VGG19 architecture.

    Reference:
    - [Very Deep Convolutional Networks for Large-Scale Image Recognition](
        https://arxiv.org/abs/1409.1556) (ICLR 2015)

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    The default input size for this model is 224x224.

    Note: each Keras Application expects a specific kind of input preprocessing.
    For VGG19, call `tf.keras.applications.vgg19.preprocess_input` on your
    inputs before passing them to the model.
    `vgg19.preprocess_input` will convert the input images from RGB to BGR,
    then will zero-center each color channel with respect to the ImageNet
    dataset, without scaling.

    Args:
      include_top: whether to include the 3 fully-connected
        layers at the top of the network.
      weights: one of `None` (random initialization),
          'imagenet' (pre-training on ImageNet),
          or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(224, 224, 3)`
        (with `channels_last` data format)
        or `(3, 224, 224)` (with `channels_first` data format).
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 32.
        E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.

    Returns:
      A `keras.Model` instance.
    >   Nr	   zThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded.  Received: `weights=z.`r	   r
   zmIf using `weights` as `"imagenet"` with `include_top` as true, `classes` should be 1000.  Received: `classes=       )default_sizemin_sizedata_formatrequire_flattenweightsN)shape)tensorr   @   )   r   relusameblock1_conv1)
activationpaddingnameblock1_conv2)   r   block1_pool)stridesr      block2_conv1block2_conv2block2_pool   block3_conv1block3_conv2block3_conv3Zblock3_conv4block3_pooli   block4_conv1block4_conv2block4_conv3Zblock4_conv4block4_poolblock5_conv1block5_conv2block5_conv3Zblock5_conv4block5_poolflatten)r   i   fc1)r   r   fc2predictionsavgmaxvgg19z+vgg19_weights_tf_dim_ordering_tf_kernels.h5modelsZ cbe5617147190e668d6c5d5026f83318)cache_subdir	file_hashz1vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5Z 253f8cb515780f3b799900260a226db6)tfiogfileexists
ValueErrorr   obtain_input_shaper   image_data_formatlayersInputis_keras_tensorConv2DMaxPooling2DFlattenDensevalidate_activationGlobalAveragePooling2DGlobalMaxPooling2Dr   get_source_inputsr   Modelr   get_fileWEIGHTS_PATHWEIGHTS_PATH_NO_TOPload_weights)include_topr   input_tensorinput_shapepoolingclassesclassifier_activation	img_inputxinputsmodelweights_path r^   T/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/applications/vgg19.pyVGG190   s$   I	






















r`   z)keras.applications.vgg19.preprocess_inputc                 C   s   t j| |ddS )Ncaffe)r   mode)r   preprocess_input)rZ   r   r^   r^   r_   rc     s    rc   z+keras.applications.vgg19.decode_predictions   c                 C   s   t j| |dS )N)top)r   decode_predictions)predsre   r^   r^   r_   rf     s    rf    )rb   reterror)Tr	   NNNr
   r   )N)rd   )__doc__Ztensorflow.compat.v2compatv2r<   kerasr   Zkeras.applicationsr   keras.enginer   keras.layersr   keras.utilsr   r    tensorflow.python.util.tf_exportr   rP   rQ   rC   r`   rc   rf   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_CAFFEPREPROCESS_INPUT_ERROR_DOCr^   r^   r^   r_   <module>   sB           W