a
    Sic?                     @   s   d Z ddlm  mZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZ dd	lmZ d
ZdZe Zeddd!ddZd"ddZedd#ddZedd$ddZejjdejejd e_ ejj e_ dS )%zInception V3 model for Keras.

Reference:
  - [Rethinking the Inception Architecture for Computer Vision](
      http://arxiv.org/abs/1512.00567) (CVPR 2016)
    N)backend)imagenet_utils)training)VersionAwareLayers)
data_utils)layer_utils)keras_exportz|https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5zhttps://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5z+keras.applications.inception_v3.InceptionV3zkeras.applications.InceptionV3Timagenet  softmaxc                 C   s  |dv s$t jj|s$td| |dkrF| rF|dkrFtd| tj|ddt | |d}|d	u rvt	j
|d
}nt|st	j
||d}n|}t dkrd}nd}t|dddddd}	t|	ddddd}	t|	ddd}	t	jddd|	}	t|	ddddd}	t|	ddddd}	t	jddd|	}	t|	ddd}
t|	ddd}t|ddd}t|	ddd}t|ddd}t|ddd}t	jdddd|	}t|ddd}t	j|
|||g|dd}	t|	ddd}
t|	ddd}t|ddd}t|	ddd}t|ddd}t|ddd}t	jdddd|	}t|ddd}t	j|
|||g|d d}	t|	ddd}
t|	ddd}t|ddd}t|	ddd}t|ddd}t|ddd}t	jdddd|	}t|ddd}t	j|
|||g|d!d}	t|	d"ddddd}t|	ddd}t|ddd}t|dddddd}t	jddd|	}t	j|||g|d#d}	t|	ddd}
t|	d$dd}t|d$dd%}t|dd%d}t|	d$dd}t|d$d%d}t|d$dd%}t|d$d%d}t|ddd%}t	jdddd|	}t|ddd}t	j|
|||g|d&d}	td'D ]}t|	ddd}
t|	d(dd}t|d(dd%}t|dd%d}t|	d(dd}t|d(d%d}t|d(dd%}t|d(d%d}t|ddd%}t	jdddd|	}t|ddd}t	j|
|||g|d)td|  d}	qt|	ddd}
t|	ddd}t|ddd%}t|dd%d}t|	ddd}t|dd%d}t|ddd%}t|dd%d}t|ddd%}t	jdddd|	}t|ddd}t	j|
|||g|d*d}	t|	ddd}t|d+ddddd}t|	ddd}t|ddd%}t|dd%d}t|dddddd}t	jddd|	}t	j|||g|d,d}	td'D ]}t|	d+dd}
t|	d"dd}t|d"dd}t|d"dd}t	j||g|d-t| d}t|	d.dd}t|d"dd}t|d"dd}t|d"dd}t	j||g|d/}t	jdddd|	}t|ddd}t	j|
|||g|d)td0|  d}	q| r4t	jd1d2|	}	t|| t	j||d3d4|	}	n.|d5krLt	 |	}	n|d6krbt	 |	}	|d	urxt|}n|}tj||	d7d2}|dkr| rtjd8td9d:d;}ntjd<td9d=d;}|| n|d	ur|| |S )>a  Instantiates the Inception v3 architecture.

    Reference:
    - [Rethinking the Inception Architecture for Computer Vision](
        http://arxiv.org/abs/1512.00567) (CVPR 2016)

    This function returns a Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each Keras Application expects a specific kind of input preprocessing.
    For `InceptionV3`, call
    `tf.keras.applications.inception_v3.preprocess_input` on your inputs before
    passing them to the model. `inception_v3.preprocess_input` will scale input
    pixels between -1 and 1.

    Args:
      include_top: Boolean, whether to include the fully-connected
        layer at the top, as the last layer of the network. Default to `True`.
      weights: One of `None` (random initialization),
        `imagenet` (pre-training on ImageNet),
        or the path to the weights file to be loaded. Default to `imagenet`.
      input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model. `input_tensor` is useful for
        sharing inputs between multiple different networks. Default to None.
      input_shape: Optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(299, 299, 3)` (with `channels_last` data format)
        or `(3, 299, 299)` (with `channels_first` data format).
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 75.
        E.g. `(150, 150, 3)` would be one valid value.
        `input_shape` will be ignored if the `input_tensor` is provided.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` (default) means that the output of the model will be
            the 4D tensor output of the last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified. Default to 1000.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.

    Returns:
      A `keras.Model` instance.
    >   Nr	   zThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded; Received: weights=r	   r
   zjIf using `weights` as `"imagenet"` with `include_top` as true, `classes` should be 1000; Received classes=i+  K   )default_sizemin_sizedata_formatrequire_flattenweightsN)shape)tensorr   channels_first          )   r   valid)stridespadding)r   @   )r   r   )r   P      0      `   r   r   sameZmixed0)axisnameZmixed1Zmixed2i  Zmixed3      Zmixed4r      mixedZmixed7i@  Zmixed8Zmixed9_i  )r$   	   avg_poolr%   predictions)
activationr%   avgmaxinception_v3z2inception_v3_weights_tf_dim_ordering_tf_kernels.h5modelsZ 9a0d58056eeedaa3f26cb7ebd46da564)cache_subdir	file_hashz8inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5Z bcbd6486424b2319ff4ef7d526e38f63)tfiogfileexists
ValueErrorr   obtain_input_shaper   image_data_formatlayersInputis_keras_tensor	conv2d_bnMaxPooling2DAveragePooling2DconcatenaterangestrGlobalAveragePooling2Dvalidate_activationDenseGlobalMaxPooling2Dr   get_source_inputsr   Modelr   get_fileWEIGHTS_PATHWEIGHTS_PATH_NO_TOPload_weights)include_topr   input_tensorinput_shapepoolingclassesclassifier_activation	img_inputchannel_axisxZ	branch1x1Z	branch5x5Zbranch3x3dblbranch_poolZ	branch3x3Z	branch7x7Zbranch7x7dbliZbranch7x7x3Zbranch3x3_1Zbranch3x3_2Zbranch3x3dbl_1Zbranch3x3dbl_2inputsmodelweights_path r]   [/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/applications/inception_v3.pyInceptionV3/   s   J	
















r_   r#   r"   c           
      C   s   |dur|d }|d }nd}d}t  dkr4d}	nd}	tj|||f||d|d| } tj|	d|d	| } tjd
|d| } | S )a  Utility function to apply conv + BN.

    Args:
      x: input tensor.
      filters: filters in `Conv2D`.
      num_row: height of the convolution kernel.
      num_col: width of the convolution kernel.
      padding: padding mode in `Conv2D`.
      strides: strides in `Conv2D`.
      name: name of the ops; will become `name + '_conv'`
        for the convolution and `name + '_bn'` for the
        batch norm layer.

    Returns:
      Output tensor after applying `Conv2D` and `BatchNormalization`.
    N_bn_convr   r   r   F)r   r   use_biasr%   )r$   scaler%   relur,   )r   r;   r<   Conv2DBatchNormalization
Activation)
rW   filtersZnum_rowZnum_colr   r   r%   bn_nameZ	conv_namebn_axisr]   r]   r^   r?     s*    
r?   z0keras.applications.inception_v3.preprocess_inputc                 C   s   t j| |ddS )Nr5   )r   mode)r   preprocess_input)rW   r   r]   r]   r^   rl     s    rl   z2keras.applications.inception_v3.decode_predictionsr    c                 C   s   t j| |dS )N)top)r   decode_predictions)predsrm   r]   r]   r^   rn     s    rn    )rk   reterror)Tr	   NNNr
   r   )r#   r"   N)N)r    )__doc__Ztensorflow.compat.v2compatv2r5   kerasr   Zkeras.applicationsr   keras.enginer   keras.layersr   keras.utilsr   r    tensorflow.python.util.tf_exportr   rL   rM   r<   r_   r?   rl   rn   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_TFPREPROCESS_INPUT_ERROR_DOCr]   r]   r]   r^   <module>   sN            d 
*