a
    Sic0                     @   s@  d Z ddlm  mZ ddlmZ ddlmZ ddlm	Z	 ddl
mZ ddlmZ edG d	d
 d
ZeddG dd deZeddG dd deZeddG dd deZeddG dd deZeddG dd deZeZeZeZeZeZeZeZeZedd d! Zed"d(d#d$Zed%d&d' ZdS ))z@Constraints: functions that impose constraints on weight values.    N)backend)deserialize_keras_objectserialize_keras_object)keras_export)doc_controlszkeras.constraints.Constraintc                   @   s    e Zd ZdZdd Zdd ZdS )
Constraintao  Base class for weight constraints.

    A `Constraint` instance works like a stateless function.
    Users who subclass this
    class should override the `__call__` method, which takes a single
    weight parameter and return a projected version of that parameter
    (e.g. normalized or clipped). Constraints can be used with various Keras
    layers via the `kernel_constraint` or `bias_constraint` arguments.

    Here's a simple example of a non-negative weight constraint:

    >>> class NonNegative(tf.keras.constraints.Constraint):
    ...
    ...  def __call__(self, w):
    ...    return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype)

    >>> weight = tf.constant((-1.0, 1.0))
    >>> NonNegative()(weight)
    <tf.Tensor: shape=(2,), dtype=float32, numpy=array([0.,  1.],
    dtype=float32)>

    >>> tf.keras.layers.Dense(4, kernel_constraint=NonNegative())
    c                 C   s   |S )ag  Applies the constraint to the input weight variable.

        By default, the inputs weight variable is not modified.
        Users should override this method to implement their own projection
        function.

        Args:
          w: Input weight variable.

        Returns:
          Projected variable (by default, returns unmodified inputs).
         selfwr	   r	   M/var/www/html/django/DPS/env/lib/python3.9/site-packages/keras/constraints.py__call__8   s    zConstraint.__call__c                 C   s   i S )a  Returns a Python dict of the object config.

        A constraint config is a Python dictionary (JSON-serializable) that can
        be used to reinstantiate the same object.

        Returns:
          Python dict containing the configuration of the constraint object.
        r	   r   r	   r	   r   
get_configG   s    	zConstraint.get_configN)__name__
__module____qualname____doc__r   r   r	   r	   r	   r   r      s   r   zkeras.constraints.MaxNormzkeras.constraints.max_normc                   @   s6   e Zd ZdZdddZejdd Zejdd	 Zd
S )MaxNormaQ  MaxNorm weight constraint.

    Constrains the weights incident to each hidden unit
    to have a norm less than or equal to a desired value.

    Also available via the shortcut function `tf.keras.constraints.max_norm`.

    Args:
      max_value: the maximum norm value for the incoming weights.
      axis: integer, axis along which to calculate weight norms.
        For instance, in a `Dense` layer the weight matrix
        has shape `(input_dim, output_dim)`,
        set `axis` to `0` to constrain each weight vector
        of length `(input_dim,)`.
        In a `Conv2D` layer with `data_format="channels_last"`,
        the weight tensor has shape
        `(rows, cols, input_depth, output_depth)`,
        set `axis` to `[0, 1, 2]`
        to constrain the weights of each filter tensor of size
        `(rows, cols, input_depth)`.

       r   c                 C   s   || _ || _d S N	max_valueaxis)r   r   r   r	   r	   r   __init__l   s    zMaxNorm.__init__c                 C   sB   t tjt|| jdd}t |d| j}||t  |   S )NTr   keepdimsr   )	r   sqrttf
reduce_sumsquarer   clipr   epsilonr   r   normsdesiredr	   r	   r   r   p   s
    zMaxNorm.__call__c                 C   s   | j | jdS )Nr   r   r   r	   r	   r   r   x   s    zMaxNorm.get_configN)r   r   	r   r   r   r   r   r   do_not_generate_docsr   r   r	   r	   r	   r   r   S   s   

r   zkeras.constraints.NonNegzkeras.constraints.non_negc                   @   s   e Zd ZdZdd ZdS )NonNegz}Constrains the weights to be non-negative.

    Also available via the shortcut function `tf.keras.constraints.non_neg`.
    c                 C   s   |t t |dt  S )N        )r   castgreater_equalr   floatxr
   r	   r	   r   r      s    zNonNeg.__call__N)r   r   r   r   r   r	   r	   r	   r   r)   }   s   r)   zkeras.constraints.UnitNormzkeras.constraints.unit_normc                   @   s6   e Zd ZdZd
ddZejdd Zejdd Zd	S )UnitNorma  Constrains the weights incident to each hidden unit to have unit norm.

    Also available via the shortcut function `tf.keras.constraints.unit_norm`.

    Args:
      axis: integer, axis along which to calculate weight norms.
        For instance, in a `Dense` layer the weight matrix
        has shape `(input_dim, output_dim)`,
        set `axis` to `0` to constrain each weight vector
        of length `(input_dim,)`.
        In a `Conv2D` layer with `data_format="channels_last"`,
        the weight tensor has shape
        `(rows, cols, input_depth, output_depth)`,
        set `axis` to `[0, 1, 2]`
        to constrain the weights of each filter tensor of size
        `(rows, cols, input_depth)`.
    r   c                 C   s
   || _ d S r   r   )r   r   r	   r	   r   r      s    zUnitNorm.__init__c              	   C   s*   |t  t tjt|| jdd  S )NTr   )r   r#   r   r   r    r!   r   r
   r	   r	   r   r      s    zUnitNorm.__call__c                 C   s
   d| j iS )Nr   r/   r   r	   r	   r   r      s    zUnitNorm.get_configN)r   r'   r	   r	   r	   r   r.      s   

r.   zkeras.constraints.MinMaxNormzkeras.constraints.min_max_normc                   @   s6   e Zd ZdZdddZejdd Zejd	d
 ZdS )
MinMaxNorma(  MinMaxNorm weight constraint.

    Constrains the weights incident to each hidden unit
    to have the norm between a lower bound and an upper bound.

    Also available via the shortcut function
    `tf.keras.constraints.min_max_norm`.

    Args:
      min_value: the minimum norm for the incoming weights.
      max_value: the maximum norm for the incoming weights.
      rate: rate for enforcing the constraint: weights will be
        rescaled to yield
        `(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
        Effectively, this means that rate=1.0 stands for strict
        enforcement of the constraint, while rate<1.0 means that
        weights will be rescaled at each step to slowly move
        towards a value inside the desired interval.
      axis: integer, axis along which to calculate weight norms.
        For instance, in a `Dense` layer the weight matrix
        has shape `(input_dim, output_dim)`,
        set `axis` to `0` to constrain each weight vector
        of length `(input_dim,)`.
        In a `Conv2D` layer with `data_format="channels_last"`,
        the weight tensor has shape
        `(rows, cols, input_depth, output_depth)`,
        set `axis` to `[0, 1, 2]`
        to constrain the weights of each filter tensor of size
        `(rows, cols, input_depth)`.
    r*         ?r   c                 C   s   || _ || _|| _|| _d S r   	min_valuer   rater   )r   r3   r   r4   r   r	   r	   r   r      s    zMinMaxNorm.__init__c                 C   sX   t tjt|| jdd}| jt || j| j	 d| j |  }||t 
 |   S )NTr      )r   r   r   r    r!   r   r4   r"   r3   r   r#   r$   r	   r	   r   r      s    zMinMaxNorm.__call__c                 C   s   | j | j| j| jdS )Nr2   r2   r   r	   r	   r   r      s
    zMinMaxNorm.get_configN)r*   r1   r1   r   r'   r	   r	   r	   r   r0      s   


r0   z"keras.constraints.RadialConstraintz#keras.constraints.radial_constraintc                   @   s&   e Zd ZdZejdd Zdd ZdS )RadialConstrainta  Constrains `Conv2D` kernel weights to be the same for each radius.

    Also available via the shortcut function
    `tf.keras.constraints.radial_constraint`.

    For example, the desired output for the following 4-by-4 kernel:

    ```
        kernel = [[v_00, v_01, v_02, v_03],
                  [v_10, v_11, v_12, v_13],
                  [v_20, v_21, v_22, v_23],
                  [v_30, v_31, v_32, v_33]]
    ```

    is this::

    ```
        kernel = [[v_11, v_11, v_11, v_11],
                  [v_11, v_33, v_33, v_11],
                  [v_11, v_33, v_33, v_11],
                  [v_11, v_11, v_11, v_11]]
    ```

    This constraint can be applied to any `Conv2D` layer version, including
    `Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"`
    or `"channels_first"` data format. The method assumes the weight tensor is
    of shape `(rows, cols, input_depth, output_depth)`.
    c                 C   s   |j }|jd u s|jdkr(td| |\}}}}t||||| f}t| jtjtj	|dddd}ttjtj	|dddd||||fS )N   zGThe weight tensor must have rank 4. Received weight tensor with shape: r/   r   )
shaperank
ValueErrorr   reshapemap_fn_kernel_constraintstackr   unstack)r   r   w_shapeheightwidthchannelskernelsr	   r	   r   r   
  s"    
zRadialConstraint.__call__c              	      s   t jddgddggddt  d }t |d dt t tj|dd fdd fd	d}t t tj|ddd
d dd }fdd} fdd}tjj	j
||||g| tddggd\}}|S )zKRadially constraints a kernel with shape (height, width,
        channels).r5   int32dtyper   r   boolc                      s    d d f S )Nr5   r	   r	   kernelstartr	   r   <lambda>*      z5RadialConstraint._kernel_constraint.<locals>.<lambda>c                      s,    d d f t jd jd S )Nr5   )r   r   rG   )r   zerosrH   r	   rJ   r	   r   rM   +  s   c                   S   s   t jdddS )Nr   rF   rG   r   constantr	   r	   r	   r   rM   0  rN   c                   S   s   t jdddS )Nr5   rF   rG   rP   r	   r	   r	   r   rM   1  rN   c                    s   t |  S r   )r   less)indexargs)rL   r	   r   rM   3  rN   c                    s(   | d t j| |  |  f dfS )Nr5   )constant_values)r   pad)iarrayrK   paddingrL   r	   r   body_fn5  s    
z4RadialConstraint._kernel_constraint.<locals>.body_fnN)shape_invariants)r   rQ   r9   r+   switchr   mathfloormodcompatv1
while_loop	get_shapeTensorShape)r   rK   kernel_shape
kernel_newrS   while_conditionr[   _r	   rY   r   r>      s,    
z#RadialConstraint._kernel_constraintN)r   r   r   r   r   r(   r   r>   r	   r	   r	   r   r6      s   
r6   zkeras.constraints.serializec                 C   s   t | S r   r   )
constraintr	   r	   r   	serializeQ  s    rj   zkeras.constraints.deserializec                 C   s   t | t |ddS )Nri   )module_objectscustom_objectsprintable_module_name)r   globals)configrl   r	   r	   r   deserializeV  s    rp   zkeras.constraints.getc                 C   s\   | du rdS t | trt| S t | tr>t| i d}t|S t| rJ| S td|  dS )z&Retrieves a Keras constraint function.N)
class_namero   z4Could not interpret constraint function identifier: )
isinstancedictrp   strcallabler;   )
identifierro   r	   r	   r   get`  s    

rw   )N)r   tensorflow.compat.v2r`   v2r   kerasr   keras.utils.generic_utilsr   r    tensorflow.python.util.tf_exportr   tensorflow.tools.docsr   r   r   r)   r.   r0   r6   max_normnon_neg	unit_normmin_max_normradial_constraintmaxnormnonnegunitnormrj   rp   rw   r	   r	   r	   r   <module>   sD   4)
$;Y
	